
AFRL-IF-RS-TR-2001-70
Final Technical Report
May 2001

ACTIVE VIRTUAL NETWORK MANAGEMENT
PREDICTION

General Electric Corporate Research and Development

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. G420

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

20010713 084
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-70 has been reviewed and is approved for publication.

APPROVED: /^Uy/'y—

SCOTT S. SHYNE
Project Engineer

FOR THE DIRECTOR:

WARREN H. DEBANY, Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGA, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

ACTIVE VIRTUAL NETWORK MANAGEMENT PREDICTION

Stephen Bush

Contractor: General Electric Corporate Research and Development
Contract Number: F30602-98-C-0230
Effective Date of Contract: 05 June 1998
Contract Expiration Date: 31 November 2000
Short Title of Work: Active Virtual Network Management

Prediction

Period of Work Covered: Jun 98 - Nov 00

Principal Investigator:
Phone:

AFRL Project Engineer:
Phone:

Stephen Bush
(518)387-6827
Scott S. Shyne
(315)330-4819

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Scott S. Shyne, AFRL/IFGA, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE Form Approved
OMBNo. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for revwwing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project 1070401881, Washington, DC 205D3.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

MAY 2001
3. REPORT TYPE AND DATES COVERED

Final Jun 98 NovOO
4. TITLE AND SUBTITLE

ACTIVE VIRTUAL NETWORK MANAGEMENT PREDICTION

6. AUTHOR(S)

Stephen Bush

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

General Electric Corporate Research Development
BldgKW-C512
One Research Circle
Niskayuna NY 12309

5. FUNDING NUMBERS

C - F30602-98-C-0230
PE- 62301E
PR- G420
TA- 00
WU-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFGA
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 Rome NY 13441-4505

ID. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-70

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Scott S. Shyne/IFGA/(315) 330-4819

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words!

In active networking, applications cannot only determine the protocol functions as necessary at the endpoints of a
communication path, but can also inject new protocols into the network for the network nodes to execute on their behalf.
The nodes of the network, called active nodes, are programmable entities. Application code executes on these nodes to
implement new protocols and services. This project has designed, prototyped, and experimentally validated a prediction
mechanism that uses the new capabilities of active networks to add prediction to network management, know as Active
Virtual Network Management Prediction (AVNMP).

14. SUBJECT TERMS

Active Network, Network Management, Prediction
15. NUMBER OF PAGES

214
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR. Oct 94

CONTENTS

1. INTRODUCTION 1
1.1 OUTLINE OF THE BOOK 1

2. MANAGEMENT REFERENCE MODEL 4
2.1 TOWARDS AN ACTIVE NETWORK MANAGEMENT

FRAMEWORK 10
2.2 PREDICTION IN NETWORK MANAGEMENT 11

2.2.1 Temporal Overlay 12
2.2.2 Enhanced Message Capabilities 13

2.3 PREDICTIVE SYSTEMS DISCUSSION 14

3. AVNMP ARCHITECTURE 19
3.1 AVNMP ARCHITECTURAL COMPONENTS 20

3.1.1 Global Virtual Time 22
3.1.2 AVNMP Message Structure 23
3.1.3 Rollback 24
3.1.4 Space-Time Trade-offs 25
3.1.5 Enhanced Message Capabilities 26
3.1.6 Multiple Future Event Architecture 27
3.1.7 Magician and AVNMP 28

3.2 EXAMPLE DRIVING PROCESSSES 29
3.2.1 Flow Prediction 29
3.2.2 Mobility Prediction 29
3.2.3 Vulnerability Prediction 31

4. AVNMP OPERATIONAL EXAMPLES 33
4.1 AVNMP OPERATIONAL EXAMPLE 33

4.1.1 Normal Operation Example 35
4.1.2 Out-of-Tolerance Rollback Example 36
4.1.3 Example Performance Results 39

5. AVNMP ALGORITHM DESCRIPTION 47
5.1 FUNDAMENTALS OF DISTRIBUTED SIMULATION 47
5.2 BASICS OF OPTIMISTIC SIMULATION 47
5.3 ANALYSIS OF OPTIMISTIC SIMULATION 48
5.4 CLASSIFICATION OF OPTIMISTIC SIMULATION

TECHNIQUES 49
5.5 REAL-TIME CONSTRAINTS IN OPTIMISTIC SIMULATION 54

5.6 PSEUDOCODE SPECIFICATION FOR AVNM P 55
APPENDIX: AVNMP IMPLEMENTATION 57
5A.1 AVNMP Class Implementation 57
5A.2 AVNMP Logical Process Implementation 59

6. ALGORITHM ANALYSIS 61
6.1 PETRI-NET ANALYSIS FOR THE AVNMP ALGORITHM 63

6.1.1 T-Invariants 72
6.2 EXPECTED SPEEDUP: n 74

6.2.1 RollbackRate 75
6.2.2 Single Processor Logical Processes 76

6.2.2.1 Task Partition Analysis 78
6.2.3 Single Processor Logical Process Prediction Rate 79
6.2.4 Sensitivity 80
6.2.5 Sequential Execution Multiple Processors 82
6.2.6 Asynchronous Execution Multiple Processors 82
6.2.7 Multiple Processor Logical Processes 84
6.2.8 AVNMP Prediction Rate with a Fixed Lookahead 86

6.3 PREDICTION ACCURACY 90
6.3.1 Prediction of Accuracy: a 90
6.3.2 Bandwidthß "" 92
6.3.3 Analysis of AVNMP Performance 93

7 ASPECTS OF AVNMP PERFORMANCE 97
7.1 MULTIPLE FUTURE EVENTS 97
7.2 GLOBAL VIRTUAL TIME 98
7.3 REAL MESSAGE OPTIMIZATION 99
7.4 COMPLEXITY IN SELF-PREDICTIVE SYSTEMS 100

7.4.1 Near-Infinite Resources 101
7.4.2 Performance of Near-Perfect Self-Predictive Islands 104

7.5 SUMMARY 106
APPENDIX: AVNMP SNMP MIB 108

8 AVNMP EXPERIMENTAL VERIFICATION 115
8.1 EXPERIMENTAL ENVIRONMENT AND DATA COLLECTION 118
8.2 THE MATHEMATICA AVNMP PACKAGE 121

8.2.1 Prediction Rate 124
8.2.2 Deriving Expected Lookahead 135

8.3 EXPERIMENTAL CONFIGURATIONS 136
8.3.1 Lookahead (IPELkAhead) 137
8.3.2 Proportion Out-of-Tolerance 138
8.3.3 Actual Load (loadAppPackets) 141
8.3.4 Speedup (IPSpeedup) 143
8.3.5 LVT versus Wallclock 145
8.3.6 Virtual Message Rate 146
8.3.7 Task Execution Time (IPETask) 149
8.3.8 Load Prediction (loadPredictionPredictedLoad) 151
8.3.9 Rollback Execution Time (IPETrb) 152
8.3.10 Expected Task Rollback Time (IPETrb) 155
8.3.11 Out-of-Order Frequency (IPPropX) 158
8.3.12 Out-of-Tolerance Frequency (IPPropY) 159
8.3.13 Queue Sizes (IPSQSize, IPQSSize, IPQRSize) 161
8.3.14 Total Number of All Message Types Processed (IPNumPkts) 164
8.3.15 Number of Virtual Messages (IP Virtual) 165

ii

8.3.16 Number of Anti-Messages (IPNumAnti) 167
8.3.17 Difference Between Actual Value and Closest Send Queue Packet

Value (IPStateError) 168
8.3.18 Time Difference (IPTdiff) 170
8.3.19 Number of Causality Rollbacks (IPCausalityRollbacks) 171
8.3.20 Number of Tolerance Rollbacks (IPToleranceRollbacks) 173
8.3.21 State Error (IPStateError) 174
8.3.22 Lookahead Analysis versus Actual 175
8.3.23 Speedup Analysis versus Actual 178
8.3.24 Accuracy Analysis 182
8.3.25 Time Difference (IPTdiff) 183

8.4 SUMMARY 185

9 SUMMARY AND CONCLUDING REMARKS 186

10 GLOSSARY 187

11 REFERENCES 191

in

TABLE OF FIGURES

Figure 2.1. Current Management Model 4
Figure 2.2. Current Centralized Management Model 5
Figure 2.3. Active Management Model 7
Figure 2.4. An Overview of the Traveling SNMP Client 8
Figure 2.5. Queryable Data 9
Figure 3.1. Virtual Overlay 19
Figure 3.2. Blocked Process 20
Figure 3.3. Active Global Virtual Time Calculation Overview 21
Figure 3.4. Legacy Network Management Future Time 22

Request Mechanism
Figure 3.5. Active Global Virtual Time Calculation Overview 23
Figure 3.6. Active Rollback Mitigation 26
Figure 3.7. Partial Spatial Network Prediction 26
Figure 3.8. Self Adjusting Data 27
Figure 3.9. Active Virtual Network Management Protocol 29

Class Hierarchy
Figure 3.10. An Example of an Attack in Progress 31
Figure 3.11. An Overview of Information Warfare Attack 3 2

Prediction
Figure 4.1. Legend of Operational Events 34
Figure 4.2. Active Node AH-1 Driving Process 34
Figure 4.3. Active Node AN-1 Receives a Virtual Message 36
Figure 4.4. Active Node AN-1 After Receiving Virtual Message 37
Figure 4.5. Active Node AN-1 Sends a Virtual Message 38
Figure 4.6. Active Node AN-1 Queue Contents after First Virtual 39

Message Arrival
Figure 4.7. Active Node AN-1 after Sending Virtual Message 40
Figure 4.8. Active Node AN-1 Out-of-Tolerance Rollback Occurs 41
Figure 4.9. Active Node AN-1 Anti-Message Sent after First 42

Rollback
Figure 4.10. Active Node AN-1; Another Anti-Message Sent after 43

First Rollback
Figure 4.11. Active Node AN-1 after Rollback 44
Figure 4.12. Active Node AN-2 First Virtual Message Received 45
Figure 4.13. Active Node AN-1 LVT versus Wallclock 46
Figure 4.14. Three-Dimensional Graph Illustrating Predicted Load 46

Values as a Function of Wallclock Time and LV Y
Figure 5.1. Time Warp Family of Algorithms 49
Figure 5.2. Partitioned Algorithms 50
Figure 5.3. Delaying Algorithms 50
Figure 5.4. AVNMP Driving Process Algorithm 55

IV

Figure 5.5. AVNMP Logical Process Algorithm 56
Figure 5.A.I. A CSP Example 58
Figure 5.A.2. A Physical Process 58
Figure 5.A.3. The Logical Process 58
Figure 5.A.4. AVNMP Class Files 58
Figure 5.A.5. The Driving Process 59
Figure 5.A.6. The Logical Process 59
Figure 5.A.7. AVNMP Normal Operation 59
Figure 5.A.8. AVNMP Rollback Operation 59
Figure 6.1. Centralized Network Management Model 61
Figure 6.2. AVNMP as a Virtual Overlay for Network 62

Management
Figure 6.3. Demonstration of li and co 65
Figure 6.4. Illustration of B~ and [B] 65
Figure 6.5. Example of Synchronic Distance 67
Figure 6.6. Example of P8 Analysis 70
Figure 6.7. Active Network Configuration for T-Invariant Analysis 72
Figure 6.8. Active Network with AVNMP for T-Invariant Analysis 73
Figure 6.9. Petri-Net Representation of Active Network with AVNMP 73

For T-Invariant Analysis
Figure 6.10. Single and Multiple Processor Logical Process System 76
Figure 6.11. Possible Partitioning of Tasks into Logical Processes 77

on a Single Processor
Figure 6.12. Optimal Single Processor Logical Process Partitioning 78
Figure 6.13. Out-of-Tolerance Rollback 80
Figure 6.14. Sequential Model of Operation 82
Figure 6.15. Active Virtual Network Management Prediction 83

Model of Parallelism
Figure 6.16. Speedup of AVNMP over Non-AVNMP Systems 84

Due to Parallelism
Figure 6.17. AVNMP Prediction Cached before Real Event 86
Figure 6.18. AVNMP Prediction Cached Later than Real Event 86
Figure 6.19. AVNMP Prediction Cached Slower than Real Time 86
Figure 6.20. Lookahead with a Sliding Lookahead Window 89
Figure 6.21. AVNMP Speedup 90
Figure 6.22. Accumulated Message Value Error 91
Figure 6.23. AVNMP Bandwidth Overhead 93
Figure 6.24. AVNMP Scalability 94
Figure 6.25. Overhead versus Speedup as a Function of Probability 95

of Rollback
Figure 6.26. Effect of Non-Causality and Tolerance on Speedup 95
Figure 6.27. Effect of Virtual Message Rate and Lookahead on 96

Speedup
Figure 7.1. Active Global Virtual Time Calculation Overview 98
Figure 7.2. Bandwidth Overhead Reduction 99

Figure 7.3. Computational organization is based on forming
systems or islands of nearing-perfect self-prediction

Figure 7.4. This predictive capability is used to drive the error
toward zero

Figure 7.5. Self-predictive islands can improve prediction fidelity
by expanding to incorporate more elements

Figure 7.6. Direct communication between A and B is unnecessary
as the dynamics of A can be transmitted to B, allowing
B to interact with a near-perfect model of A

Figure 7.7. Terms Borrowed from Materials Science
Figure 7.8. Performance of Self-predictive Islands
Figure 7.9. A Brittle vs. Ductile System
Figure 7.10. Brittle Subsystem Components
Figure 8.1. Tolerance Setting Decreases as Wallclock Increases

Thus Demanding Greater Accuracy
Figure 8.2. This Causes the Proportion of Out-of-Tolerance

Messages to Increase Due to Greater Demand for Accuracy
Figure 8.3. Predictions Become More Accurate
Figure 8.4. At the Expense of Lookahead
Figure 8.5. and Speedup
Figure 8.6. The GE CRT) Active Network Testbed
Figure 8.7. Overview of the Management Framework
Figure 8.8. Overview of the AVNMP Architecture
Figure 8.9. The AVNMP Management Interface
Figure 8.10. AVNMP Architecture in More Detail
Figure 8.11. AVNMP Speed as a Function of Out-of-Order

Messages
Figure 8.12. AVNMP Performance as a Function of Out-of-

Tolerance Message Proportion
Figure 8.13. Lookahead Performance
Figure 8.14. Tolerance Setting as a Function of Out-of-Tolerance

Proportion
Figure 8.15. Proportion of Out-of-Tolerance Messages as a Function

of Distance into the Future
Figure 8.16. Gamma as a Function of Wallclock and Out-of-Order

Message Proportion
Figure 8.17. Probability of a Late Prediction as a Function of

Out-of-Order and Out-of-Tolerance Message Proportions
Figure 8.18. AVNMP Prediction Rate as a Function of Out-of-Order

and Out-of-Tolerance Messages
Figure 8.19. Speedup of AVNMP as a Function of Out-of-Order

and Out-of-Tolerance Message Proportions
Figure 8.20. Maximum Task Time as a Function of Local Virtual

Time and Wallclock Time

101

102

103

103

105
105
106
107
116

116

117
117
118
119
119
120
121
121
125

126

127
128

128

129

130

131

132

134

VI

Figure 8.21. Maximum Task Time as a Function of Local Virtual 135
Time

Figure 8.22. Experimental Configuration 137
Figure 8.23. Lookahead with Multiple Driving Processes 138
Figure 8.24. Lookahead as a Function of Wallclock 138
Figure 8.25. Proportion Out-of-Tolerance Messages with Multiple 139

Driving Processes
Figure 8.26. Proportion Out-of-Tolerance Messages as a Function 139

of Wallclock
Figure 8.27. Proportion Out-of-Tolerance Messages as a Function 140

of Tolerance
Figure 8.28. Virtual Messages as a Function of Tolerance with 140

Multiple Driving Processes
Figure 8.29. Load as a Function of Wallclock 141
Figure 8.30. Load with Multiple Driving Processes 141
Figure 8.31. Load Prediction as a Function of Wallclock 142
Figure 8.32. Load Prediction with Multiple Driving Processes 142
Figure 8.33. Speed as a Function of Wallclock 143
Figure 8.34. Speedup with Multiple Driving Processes 144
Figure 8.35. Speedup as a Function of Wallclock 144
Figure 8.36. Speed as a Function of Proportion Out-of-Tolerance 145

Message with Multiple Driving Processes
Figure 8.37. LVT as a Function of Wallclock 146
Figure 8.38. LVT as a Function of Wallclock with Multiple 146

Driving Processes
Figure 8.39. Virtual Message Rate as a Function of Wallclock Time 147
Figure 8.40. Virtual Message Rate as a Function of Proportion of 148

Out-of-Tolerance Messages
Figure 8.41. Virtual Message Rate as a Function Wallclock Time 148

with Multiple Driving Processes
Figure 8.42. Expected Task Execution Time as a Function of 149

Wallclock
Figure 8.43. Expected Task Execution Time as a Function of 150

Wallclock with Multiple Driving Processes
Figure 8.44. Expected Task Time as a Function of Out-of-Tolerance 150

Message Proportion
Figure 8.45. Expected Task Time as a Function of Out-of-Tolerance 151

Message Proportion with Multiple Driving Processes
Figure 8.46. A Snapshot of Predicted Load versus Prediction 152

Time of that Load
Figure 8.47. A Snapshot of Predicted Load versus Prediction 152

Time ofthat Load with Multiple Driving Processes
Figure 8.48. Expected Task Execution Time versus Wallclock 153
Figure 8.49. Expected Task Execution Time versus Wallclock 153

with Multiple Driving Processes

Vll

Figure 8.50. Combined Rollbacks versus Wallclock
Figure 8.51. Combined Rollbacks versus Wallclock with

Multiple Driving Processes
Figure 8.52. Mean Task Rollback Time versus Wallclock
Figure 8.53. Mean Task Rollback Time versus Wallclock with

Multiple Driving Processes
Figure 8.54. State Queue Size versus Wallclock
Figure 8.55. State Queue Size versus Wallclock with

Multiple Driving Processes
Figure 8.56. Proportion Out-of-Order versus Wallclock
Figure 8.57. Proportion Out-of-Order versus Wallclock with

Multiple Driving Processes
Figure 8.58. Proportion of Out-of-Tolerance Messages versus

Tolerance
Figure 8.59. Proportion of Out-of-Tolerance Messages versus

Wallclock Time with Multiple Processes
Figure 8.60. State Queue Size versus Wallclock
Figure 8.61. State Queue Size versus Wallclock with

Multiple Driving Processes
Figure 8.62. Send Queue Size versus Wallclock
Figure 8.63. Send Queue Size versus Wallclock with

Multiple Processes
Figure 8.64. Receive Queue Size versus Wallclock
Figure 8.65. Receive Queue Size versus Wallclock with

Multiple Processes
Figure 8.66. Total Number of Messages Processed versus

Wallclock
Figure 8.67. Total Number of Messages Processed versus

Wallclock with Multiple Processes
Figure 8.68. Number of Virtual Messages versus Wallclock
Figure 8.69. Number of Virtual Messages versus Wallclock

with Multiple Driving Processes
Figure 8.70. Number of Anti-Messages versus Wallclock with

Multiple Driving Processes
Figure 8.71. Number of Anti-Messages versus Wallclock
Figure 8.72. Prediction versus Wallclock
Figure 8.73. Prediction versus Wallclock with Multiple

Driving Processes
Figure 8.74. Time Difference in Prediction Check versus

Wallclock
Figure 8.75. Time Difference in Prediction Check versus

Wallclock with Multiple Driving Processes
Figure 8.76. Number of Causality Rollbacks versus Wallclock

154
155

156
156

157
157

158
159

160

160

161
162

162
163

163
164

165

165

166
166

167

168
169
169

170

171

172

Vlll

Figure 8.77. Number of Causality Rollbacks versus Wallclock 172
with Multiple Driving Processes

Figure 8.78. Number of Tolerance Rollbacks versus Wallclock 173
Figure 8.79. Number of Tolerance versus Wallclock with Multiple 174

Driving Processes
Figure 8.80. Prediction Error versus Wallclock 175
Figure 8.81. Prediction Error versus Wallclock with Multiple 175

Driving Processes
Figure 8.82. Lookahead versus Proportion Out-of-Tolerance 176
Figure 8.83. Lookahead versus Proportion Out-of-Tolerance with 177

Multiple Driving Processes
Figure 8.84. Analytical (Dashed Line) versus Actual (Solid Line) 178

Lookahead as a Function of Proportion Out-of-Tolerance
Messages

Figure 8.85. Analytical (Dashed Line) versus Actual (Solid Line) 178
Lookahead as a Function of Proportion Out-of-Tolerance
Messages with Multiple Driving Processes

Figure 8.86. Proportion Out-of-Tolerance Messages versus Speedup 179
Figure 8.87. Proportion Out-of-Tolerance Messages versus Speedup 180

with Multiple Driving Processes
Figure 8.88. Analytical (Dashed Line) versus Actual (Solid Line) 181

Speed as a Function of Proportion Out-of-Tolerance
Figure 8.89. Analytical (Dashed Line) versus Actual (Solid Line) 181

Speed as a Function of Proportion Out-of-Tolerance
with Multiple Driving Processes

Figure 8.90. Number of Packets versus LVT and Wallclock 182
Figure 8.91. Number of Packets versus LVT and Wallclock with 183

Multiple Driving Processes
Figure 8.92. Time Difference between Actual and Predicted Value 184

when Tolerance Checked
Figure 8.93. Time Difference between Actual and Predicted Value 184

when Tolerance Checked with Multiple Driving Processes

IX

LISTING OF TABLES

Table 2.1. Active Network Composition Methods 11
Table 3.1. AVNMP Logical Process Structures 24
Table 3.2. AVNMP Message Fields 24
Table 3.3. AVNMP Message Types 24
Table 5.1. Time Warp Family of Algorithms 51

1
INTRODUCTION

Active networking is a novel approach to network architecture in which network nodes - the
switches, routers, hubs, bridges, gateways etc., - perform customized computation on the packets
flowing through them. The network is called an "active network" because new computations are
injected into the nodes dynamically, thereby altering the behavior of the network. Packets in an
active network can carry fragments of program code in addition to data. Customized computation
is embedded in the packet's code, which is executed on the network nodes. By making the
computation application-specific, applications utilizing the network can customize network
behavior to suit their requirements and needs.

The active network model provides a user-driven customization of the infrastructure, allow-
ing new services to be deployed at a faster pace than can be sustained by vendor-driven consen-
sus or through standardization. The essential feature of active networks is the programmability of
its infrastructure. New capabilities and services can be added to the networking infrastructure on
demand. This creates a versatile network that can easily adapt to future needs of applications.
The ability to program new services into the network will lead to a user-driven innovation
process in which the availability of the new services will be dependent on their acceptance in the
marketplace. In short, active networking enables the rapid deployment of novel and innovative
services and protocols into the network. For example, a video conferencing application can inject
a custom packet-filtering algorithm into the network that, in times of congestion, filters video
packets and allows only audio packets to reach the receivers. Under severe congestion condi-
tions, the algorithm compresses audio packets to reduce network load and alleviate congestion.
This enables the application to handle performance degradation due to network problems grace-
fully and in an application-specific manner.

In active networking, applications cannot only determine the protocol functions as necessary
at the endpoints of a communication path, but can also inject new protocols into the network for
the network nodes to execute on their behalf. The nodes of the network, called active nodes, are
programmable entities. Application code executes on these nodes to implement new protocols
and services. This project has designed, prototyped, and experimentally validated a prediction
mechanism that uses the new capabilities of active networks to add prediction to network man-
agement, known as Active Virtual Network Management Prediction (AVNMP).

1.1 OUTLINE OF THE REPORT

Chapter 2 discusses the motivation for a reference model that addresses limitations of the
current network management framework and leverages the powerful features of active network-
ing to develop an integrated framework. The later part of Chapter 2 prepares the reader for
AVNMP, which is the focus of the remainder of the report.

The report provides a close-up view of a novel application enabled by active network tech-
nology. It describes the life-cycle of an active networking protocol from conception to imple-
mentation. The application chosen implements the predictive aspect of the active management
framework discussed in Chapter 2 and is called Active Virtual Network Management Prediction.
In current network management, managed entities are either polled to determine their health or
they send unsolicited messages indicating failed health. By the time such messages are gener-
ated, much less received, by a centralized system manager, the network has already failed.
Active Virtual Network Management Prediction has resulted from research in developing pro-
active system management, in other words, to solve a potential problem before it impacts the
system. Active Virtual Network Management Prediction accomplishes this by modeling network
devices within the network itself and running that model ahead of real time. Active Virtual
Network Management Prediction is also self-correcting. Thus, managed devices can be queried
for events which are likely to happen in the future; problems are detected ahead of time. The
chapters of the report are organized as follows:

• Chapter 2: Management Reference Model
• Chapter 3: AVNMP Architecture
• Chapter 4: Detailed Example of AVNMP Operation
• Chapter 5: Algorithmic Description of AVNMP
• Chapters 6-7: Performance Measurements and Analysis of AVNMP
• Chapter 8: Experimental Validation of AVNMP
• Chapter 9: Summary and Concluding Remarks
• Chapter 10: Glossary
• Chapter 11: References

Chapter 3 describes the architecture of the AVNMP framework and explains how various
features of an active network can be leveraged to create a novel management strategy. Chapter 3
includes examples of Driving Processes for specific applications, while Chapter 4 provides a
detailed operational example of AVNMP. Chapter 5 discusses the background and origin of the
algorithm used by AVNMP and includes an Appendix on some of the implementation details.
Chapter 6 quantifies the performance of AVNMP, deriving equations for AVNMP performance
and overhead. Chapter 7 considers the challenges faced by any system attempting to predict its
own behavior and some of the unique characteristics of AVNMP in meeting those challenges.
Chapter 8 presents an experimental validation of AVNMP.

This project has challenged itself to consider the benefits of Active Networking and to apply
those benefits towards the management of Active Networks. The inherently distributed nature of
communication networks and the computational power unleashed by the Active Networking
paradigm have been used to mutual benefit in the development of the Active Virtual Network
Management Prediction mechanism. Both load and CPU prediction capability have been ex-
plored using AVNMP. Active Networks benefit from AVNMP by continuously providing
information about potential problems before they occur. AVNMP benefits from Active Networks
in many ways. The first and most practical is the ease of development and deployment of this
novel protocol. This could not have been accomplished so quickly or easily given today's closed,
proprietary network device processing. Another benefit is the fact that network packets now have
the unprecedented ability to control their own processing. Great advantage is taken of this new
capability in AVNMP. Virtual messages, varying widely in content and processing, can adjust
their predicted values as they travel through the network. Finally, Active Networks add a level of
robustness that cannot be found in today's networks. This robustness is due to the ability of the

AVNMP system components, which are themselves active packets, to easily migrate from one
node to another in the event of failure - or the prediction of failure provided by AVNMP!

MANAGEMENT REFERENCE MODEL

This chapter discusses the goals and requirements for an active network management
framework. The active network management framework refers to the minimum model that
describes components and interactions necessary to support management within an active
network. This is motivated by comparing management in current networks with the possibilities
enabled to support management within active networks. Towards this objective, an overview of
the current network management model is discussed as a prelude to discussing the active
network management model.

In the current communications model, managed devices are viewed abstractly as protocol
layer two and protocol layer three network devices that forward data from source towards
destination end-systems. The actions taken by these devices are predefined and fixed for each
protocol layer and packet type as shown in Figure 2.1. The figure shows non-active data packets
transporting management requests to the managed device and a possible management response is
shown leaving the managed device.

Management
Request

Management

Application layer
(Agent)

Data Packet Transport Layer

Device

Network Layer

Data Link Layer

Physical Layer

Management
Request

Data Packet

Figure 2.1. Current Management Model

The current management model, as illustrated and implemented by such protocols as the
Simple Network Management Protocol (SNMP) and the Common Management Information
Protocol (CMLP), requires that network devices have a management agent that responds to
management requests. Devices must be addressable and respond directly to remote management
commands. The model assumes that network nodes are instrumented with the ability to respond
to requests for pre-configured data points of management information. Management information
needs to be gathered for behavior of protocols in the higher layers of the stack, e.g., application
data. This requires instrumenting more than just the bottom two or three standard protocol layers.

Therefore, management has never been a natural fit to the current non-active communications
model for intermediate network devices. It was initially considered difficult and uncommon for
any type of standards-based management to exist because of the large number of non-
interoperable proprietary attempts to solve the problem. Thus, the goal had been to implement a
standard management framework that was robust and would be ubiquitously deployed across the
Internet. The Simple Network Management Protocol had filled this role to some extent; however,
active networks allow for a better solution.

In the current management model, shown in Figure 2.2, high-level queries are entered into, or
generated from, a central management station that breaks the query down into low-level requests
for data from managed entities. The current management model requires that all data values that
would be needed for management must be predetermined and pre-defined in an information store
called a Management Information Base (MB). Each data point has a predetermined type, size,
and access level and is called a Management Information Base Object. The result is that the
Management Information Base contents, that is, the collection of Objects, must be painstakingly
designed and agreed upon far ahead of time before they can be widely used. Even after
accomplishing this, elements of the Management Information Base have static, inflexible types.
This is antithetical to the objective of the active network framework, which seeks to minimize
committee-based agreements. In an active network framework, elements of the Management
Information Base have the potential to be dynamically defined and used by applications. The
static data type of a Management Information Base may be reasonable for network hardware, but
becomes less appropriate as higher layers of the protocol stack and applications are instrumented.

Management
Station

Monitor &
Control
 ..»•••••'-'•'"'

Managed Entities

Figure 2.2. Current Centralized Management Model.

The current management model leads to a poor network control architecture. Large delays
are incurred as agents send raw data to a central management station that takes time to refine and
process the primitive data and perhaps respond with a Simple Network Management Protocol Set
Request control action. However, the current management model has been primarily concerned
with monitoring rather than control, in part because control has been hampered by the long
transfer delay times to the centralized management station. While management Set Requests can

be used for control purposes, few Management Information Bases today utilize the set
commands for any type of real-time control.

As the Simple Network Management Protocol in current non-active networks has made steps
toward providing reliable, integrated network management, the demand for more systems
integrated management and control increases. Perhaps the demand is fed by the success of the
Simple Network Management Protocol and by the explosion in the size of communication
networks and number of applications utilizing them. Network administrators are pushing to
extend network management ever higher towards and into the application layer. Integration is a
primary driver. Clearly, applications, end-systems and the network all need to be managed in an
integrated fashion. 'O"

The paradigm of instrumenting network elements is not the best solution for managing higher
layer protocols and applications, especially in an active network wherein applications have a
direct interaction with network elements. One reason is increased complexity. Network hardware
devices and low-level network protocol layers behave in precise, well defined ways. On the other
hand, active applications can interact with network protocols and other applications in myriad
ways. This complexity in interaction requires a proportional increase in the number of
management data points. Instrumenting every network device and end-system to support
management of every application is not a scalable or feasible option. This could lead to other
problems, such as redundant management data points, because two applications interacting with
each other utilize the same management agent capability.

Another characteristic of the current management paradigm is that intermediate nodes are not
designed to support management algorithms on the nodes themselves. However, fully integrated
system management has always been the goal. Values from data points from all managed
elements, including applications, are simply transported to a centralized management station
where all refinement and processing takes place. Proxy agents are sometimes used to manage
devices that have non-standard or non-existing management interfaces. Proxy agents serve as
intermediary translators between the management standard and the operations of which the
device is capable for management. The only other place that processing could be done within the
network is in the managed object's agent. However, the prevailing philosophy has been that the
managed object should be fully devoted to its primary task of forwarding data, not management,
and therefore the agent is designed and implemented to be as simple and efficient a process as
possible. The agent simply responds to requests for management data point values and generates
unsolicited trap messages, hopefully, infrequently and only under extreme conditions.

Active networking affords an opportunity to take a new look at the network management
problem and communications in general from a different perspective. It is a perspective that flips
the traditional networking paradigm on its head. By allowing general-purpose computation on
traditional intermediate network systems, it is no longer required that application processing,
including network management processing, be restricted to end-systems. Optimum management
efficiency can be achieved because processing can be allocated to intermediate network
resources. This allows for a larger set of feasible solutions to the allocation of processing
resources. For example, the old philosophy of keeping communications as simple possible has
resulted in a plethora of highly specialized protocols illustrated by the large number of Internet
Engineering Task Force Requests for Comments that are extant. In terms of network
management, the old philosophy has caused enormous inefficiency by requiring large amounts of
data to be transported to centralized management stations, even in instances when the data turns
out to be of limited or no value. The active network model provides a communications model

that is a better fit to the management model. In the active network reference model, intermediate-
system active devices have the ability to accept and process any packet as a natural part of its
packet processing, including network management packets. In fact, in the new management
paradigm, management can be integrated into the processing framework itself; that is, packets
are the application and manage themselves.

In the new management model shown in Figure 2.3, it is possible for a high-level
management query in executable form to be sent directly to the managed active application.
Because the managed application is active, it is implemented via active packets. The
management query active packet interacts with the active application's packets in order to
determine the result of the query. Given active network protocol composition, methods
dynamically bound to an application no longer require a Management Information Base with
static data point definitions to return predefined values, but instead, access local data points,
compute a result from the local data and return only the final result, or some set of data culled
from the local data that can lead to the final result, which may be computed in another part of the
network. Many management systems today operate by polling a value and setting a threshold
that trips an alarm when the threshold is crossed. Frequent queries result in wasted bandwidth if
the threshold is rarely reached. The only information required in such cases is the alarm. In the
active network management environment, the threshold crossing detection can be dynamically
bound as a method in the managed active application.

Active Packet

Manages Itself

Device

Active Application

EE Mgt. EE

NodeOS

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Active Packet

Figure 2.3. Active Management Model.

The old management philosophy requires that a Set Request be used for control purposes.
This results in long delays when the controller is a centralized management station as compared
to the active network model that enables local computation and control. Delays are clearly
dangerous in a control system. Thus, using the Simple Network Management Protocol Set
Request is also highly inefficient for dynamic control purposes. Active networks allow more
distributed control for management purposes than in today's management model and an
opportunity for a new management paradigm. The control algorithm is bound directly in the
managed active application, thus reducing the delay incurred by dealing with a centralized
management station. The active nature of the network also allows a framework in which efficient

prediction of network behavior is possible. The Active Virtual Network Management Algorithm
described in the next part of this report takes advantage of the active network to provide a model-
based predictive management control framework. This requires a form of introspection that is
possible in the new management model. Introspection is enabled because applications can
control and manage themselves to a greater degree with active networks than ever before in the
old management philosophy. The following example shows that data in an active network
management model example has the ability to be queried by standards based network
management protocols. A small agent is encapsulated with the active data as shown in Figure
2.5. When the data is queried, the agent responds with the values maintained by that specific
agent's Management Information Base (MIB). The converse of this is shown in Figure 2.4,
which illustrates active data containing a management client capable of querying management
agents. This concept has been prototyped in Java in the active network testbed at General
Electric Corporate Research and Development.

Packet
Network Device

(switch, router, hub, etc

Code Data

Packet

Code

Management.'
Client '

Network Device
(switch, router, hub, etc. . .)

Polls MIB Object-

EE
NodeOS

Figure 2.4. An Overview of the Traveling SNMP Client.

It has been recognized that, even in the new active management model, systems
administrators require an integrated view of the entire managed system. However, note that
integrated does not necessarily imply centralized. Also, note that the functionality of an
integrated management view has changed dramatically from the old management model. The old
model management view consisted of displaying values from static data types that are
predefined. This is in contrast to the new that consists of controlling the algorithms (methods)
that are bound to managed active entities and displaying results from those algorithms. Thus, the
new management model deals with methods rather than data types.

Packet
Network Device

(switch, router, hub, etc...)

Code Data
NodeOS

Figure 2.5. Queryable Data.

In the view of the authors, the new active network management goals should consist of:

■ Automated self-management and control of applications.

■ Ability to dynamically add/remove management features across all active applications.

■ A richer integrated management view of the network and applications than in the old
network management model.

■ Decentralized and distributed management within the network for increased efficiency.

■ Extreme reliability in the face of network failure.

■ Support for integrated management of legacy applications

A few words of explanation are in order to justify why these goals are worthy of pursuit.
Clearly, network management benefits from being as automated as possible. The words "self-
management" are used because it is assumed that the system is able to determine best how to
manage and control itself. An integrated view is the most concise and logical for human
consumption and allows quick identification of correlated events. This assumes that a security
policy mechanism is in place for network managers to gain access only to their own views of the
system. The goal is that active networks will allow a richer semantic view of the integrated
system. We want the system to be decentralized and distributed since that provides the most
efficient use of resources and better response times. In addition, it can allow for graceful
degradation of performance as resources fail. Finally, management is most critical when the
system is failing. Thus the management system must be as robust and reliable as possible; that is,
it should be the last service to fail. A framework within active networks that supports these goals
is useful. However, care must be taken in developing a framework that does not preclude the
development of general-purpose innovative management techniques enabled by active
networking. The Active Virtual Network Management Prediction Algorithm is a step towards an
active network management framework by enabling model-based predictive control, as discussed
in the next section.

2.1 TOWARDS AN ACTIVE NETWORK MANAGEMENT FRAMEWORK

The previous section discussed the goals of a new framework for network management.
Consider what is required from the framework in order to achieve these goals. Automated self-
management and control of applications require application developers to provide monitoring
and access into their applications. While an application may be self-managing and autonomous,
it cannot be a completely closed system. The application needs information about other
applications and the network that it resides upon. The application may need to negotiate with
other applications for resources. The management interface between applications could be
accomplished through definitions as is the case in today's non-active networks; however, more is
possible with an active network. For example, the Management Information Base could itself
become an active entity. Model-based predictive control is a particular mechanism enabled by
the Active Virtual Network Management Prediction Algorithm described in detail in the next
part of this report. A fully autonomous, self-managed application requires:

Inter-application semantic specification

Inner-loop control mechanisms

Negotiation capability

Managed data semantic correlation

Security policy

The negotiation capability and inter-application semantic specification are of primary interest
here because they require some form of semantic knowledge and goal seeking capability. While
dealing with semantic knowledge and goal achieving research are major efforts in their own
right, the new architecture should facilitate and encourage their development. The integrated
management view requires that all the management information from each managed entity be
brought together and presented to a single user. This means that a policy must be in place to
control access to information and the data must have the ability to correlate itself with other data
for an integrated view. This requires a security policy and managed data semantic correlation.

There are several spheres of management in the active network management model: the
Execution Environment (EE), the Active Application (AA), and the Network management
algorithm, where a network Management Application (MA) is a new management feature to be
added to all Active Applications (AA). The ability to dynamically bind methods into active
applications is an assumed feature in active networks. The actual mechanisms for inserting
methods into an existing and executing application are discussed in (Zegura, 1998). A brief
summary of example methods is presented in Table 2.1. Self-organizing management code,
knowing when, where, and how to insert itself into the managed active application, is a goal that
is partially met by the Active Virtual Network Management Prediction Algorithm. The Active
Virtual Network Management Prediction framework discussed in detail in the next part of this
report demonstrates the fundamental requirements of the new active network management
framework, namely:

■ Access to managed device monitoring and control.

■ Insertion of monitoring elements into arbitrary locations of active applications.

■ Injection of executable models onto managed nodes and/or into managed active
applications.

10

Injection/interception of management packets within the network.

Table 2.1. Active Network Composition Methods.

Composition Type Reference

Functional Hicks et al„ 1999

Dataflow Da Silva et al., 1998

Slots Samrat Bhattercharjee, Kennth L. Calvert and Ellen W. Zegura, 1998

Signaling Extensions Braden et al., 2000

2.2 PREDICTION IN NETWORK MANAGEMENT

Network management is evolving from a static model of simply monitoring the state of the
network to a more dynamic, feature-rich model that contains analysis, device and line utilization,
and fault-finding capabilities. The management marketplace is rich in software to help monitor
and analyze performance. However, a severe limitation of current state-of-the-art network
management techniques is that they are inherently reactive. They attempt to isolate the problem
and determine solutions after the problem has already occurred. An example of this situation is
the denial of service attack on Internet portal Yahoo!'s servers on February 7, 2000. Network
managers were only able to detect the attack and respond to it long after it crippled their servers.
To prevent such occurrences, network management strategies have to be geared towards
assessing and predicting potential problems based on current state. Another limitation of current
management software is "effect-chasing." Effect chasing occurs when a problem causes a
multitude of effects that management software misdiagnoses as causes themselves. Attempts to
solve the causes instead of the problem result in wasted effort. Recent advances in network
management tools have made use of artificial intelligence techniques for drilling down to the
root cause of problems. Artificial Intelligence techniques sift through current data and use event
correlation after the problem occurs to isolate the problem. While this provides a reasonable
speedup in problem analysis, finding a solution can still be time-consuming because these tools
require enough data to form their conclusions. Therefore, proactive management is a necessary
ingredient for managing future networks. Part of the proactive capability is provided by
analyzing current performance and predicting future performance based on likely future events
and the network's reaction to those events. This can be a highly dynamic, computationally
intensive operation. This has prevented management software from incorporating prediction
capabilities. But distributed simulation techniques take advantage of parallel processing of
information. If the management software can be distributed, it is possible to perform
computation in parallel and aggregate the results to minimize computation overhead at each of
the network nodes. Secondly, the usefulness of optimistic techniques has been well documented
for improving the efficiency of simulations. In optimistic logical process synchronization
techniques, also known as Time Warp (Bush et al., 1999; Bush, 1999), causality can be relaxed
in order to trade model fidelity for speed. If the system that is being simulated can be queried in
real time, prediction accuracy can be verified and measures taken to keep the simulation in line
with actual performance. Networks present a highly dynamic environment in which new

11

behaviors can be introduced as new applications inject new forms of data. The network
management software would have to be highly adaptive to model these behaviors and analyze
their effects.

Active networking provides an answer to this problem. Active networking offers a
technology wherein applications can inject new protocols into the network for the network nodes
to execute on behalf of the application. A network is defined to be an active network if it allows
applications to inject customized programs into the network to modify the behavior of the
network nodes. The nodes of the network, called active nodes, are programmable entities.
Application code is embedded inside a special packet called a SmartPacket. When the
SmartPacket reaches the appropriate active node, the code is extracted and executed at the node
to implement new services. Active networking thus enables modification of a running simulation
by injecting packets modeling the behavior of a new application into the network. This research
presents a new proactive network management framework by combining the three key enabling
technologies: (1) distributed simulation, (2) optimistic synchronization, and (3) active
networking. The next section provides an introduction to the predictive framework and describes
its various components.

2.2.1 Temporal Overlay

The approach taken by AVNMP is to inject an optimistic parallel distributed simulation of
the network into the active network. This can be viewed as a virtual overlay network running
temporally ahead of the actual network. A virtual network, representing the actual network, can
be viewed as overlaying the actual network. A motivating factor for this approach is apparent
when AVNMP is viewed as a model-based predictive control technique where the model resides
inside the system to be controlled. The environment is an inherently parallel one; using a
technique that takes maximum advantage of parallelism enhances the predictive capability. A
well-known problem with parallel simulation is the blocking problem, in which processors are
each driven by messages whose queues are attached to the processor. The message time-stamps
are within the message. The message value is irrelevant. It is possible that one processor could
execute a message with a given time stamp, then it could receive the next message with an earlier
time-stamp. This is a violation of causality and could lead to an inaccurate result. There have
been many proposed solutions to this problem. However, many solutions depend on the
processor that is likely to receive messages out of order, waiting until the messages are
guaranteed to arrive in the proper order. This increases delay and thus reduces the overall system
performance. The AVNMP Algorithm makes use of a well-known optimistic approach that
allows all processors to continue processing without delay, but with the possibility that a
processor may have to rollback to a previous state. In addition the AVNMP Algorithm
dynamically keeps the predictions within a given tolerance of actual values. Thus the model-
based predictive system gains speedup due to parallelism while maintaining prediction accuracy.

The AVNMP system is comprised of Driving Processes, Logical Processes, and
streptichrons, which are active virtual messages. The Logical Processes and Driving Processes
execute within an Active Network Execution Environment (EE) on each active network node.
The Logical Process manages the execution of the virtual overlay on a single node and is
primarily responsible for handling rollback. Rollback can be induced by out-of-order Virtual
Message arrivals and by prediction inaccuracy. A tolerance is set on the maximum allowable
deviation between the predicted values and the actual values. If this tolerance is exceeded, a
rollback to wallclock time occurs. The Logical Processes' notions of time only increment as

12

Virtual messages are executed. A sliding lookahead window is maintained so that a specified
distance bounds the Logical Processes' virtual time progression into the future. The Driving
Process monitors the input to that portion of the network enhanced by AVNMP and generates the
Virtual Messages that drive the AVNMP Logical Processes forward in time. The driving process
monitors the actual application via a general management frame developed within the active
network environment. The driving process samples the values to be predicted and generates a
prediction. The actual mechanism used for predicting output from any application is application
dependent and de-coupled from the system. However, a simple curve-fitting algorithm based
upon past history has worked adequately well.

2.2.2 Enhanced Message Capabilities

A Streptichron (from Classical Greek meaning to "bend time") is an active packet facilitating
prediction that implements any of the active mechanisms described in this section. The
streptichron can use this capability to refine its prediction as it travels through the network. In the
initial AVNMP architecture, there was a one-to-one correspondence between virtual messages
and real messages. While this correspondence works well for adding prediction to protocols
using a relatively small portion of the total bandwidth, it is clearly beneficial to reduce message
load, especially when attempting to add prediction of the bandwidth itself. There are more
compact forms of representing future behavior within an active packet besides a virtual message.
For relatively simple and easily modeled systems, only the model parameters need be sent and
used as input to the logical process on the appropriate intermediate device. Note that this
assumes that the intermediate network device's Logical Process is simulating the device
operation and contains the appropriate model. However, because the payload of a virtual
message is exactly the same as a real message, it can be passed to the actual device, and the
result from the actual device is intercepted and cached. In this case, the Logical Process is a thin
layer of code between the actual device and virtual messages primarily handling rollback. An
entire executable model can be included within an active packet generated by the DP and
executed by the Logical Process. When the active packet reaches the target device, the model
provides virtual input messages to the Logical Process, and the payload of the virtual message is
passed to the actual device as previously described. Autoanaplasis ("self adjust") is the self-
adjusting characteristic of streptichrons. For example, in load prediction, streptichrons use the
transit time to check prior predictions. General-purpose code contained within the packet is
executed on intermediate nodes as the packet is forwarded to its destination. For example, a
packet containing a prediction of traffic load may notice changes in traffic that influence the
value it carries as the packet travels towards its destination. The active packet updates the
prediction accordingly.

Time is critical in the architecture of the AVNMP Algorithm system; thus, most classes are
derived from class Date. Class AvnmpTime handles relative time operations. Class Gvt uses the
active GvtPackets class to calculate global virtual time. Class AvnmpLP handles the bulk of the
processing including rollback. Class Driver generates and injects real and virtual messages into
the system. The PP class either simulates or accesses an actual device on behalf of the Logical
Process. The PP class may not need to simulate the device because the payload of a virtual
message is exactly the same as a real message; thus, the payload of the virtual message can be
passed to the actual device and the result from the actual device is intercepted and cached. In this
case, the Logical Process is a thin layer of code between the actual device accessed by the PP
class. The GvtPacket class implements the Global Virtual Time packet that is exchanged by all

13

logical and driving processes to determine global virtual time. The AvnmpPacket class is derived
from KU_SmartPacket_V2 and is the class from which GvtPacket and Streptichron classes are
derived. Magician is a toolkit that provides a framework for creating SmartPackets as well as an
environment for executing the SmartPackets. Magician is implemented in Java version 1.1.
Version 1.1 was primarily chosen because it was the first version to support serialization.
Serialization preserves the state of an object so that it can be transported or saved, and re-created
at a later time. Therefore, in Magician, the executing entity is a Java object whose state is
preserved as it traverses the active network. Magician adheres to the Active Network
Encapsulation Protocol (ANEP) (Alexander et al, 1997) format when sending the Java class
definitions and the Java object itself over the network. The details about the architecture of an
active node in Magician and the exact format of a Magician SmartPacket are described in
(Kulkarni et al., 1998). AVNMP runs as an active application (AA) inside the Magician
environment. AVNMP queries Magician's state to perform resource monitoring and for load
computation. Communication between different packets belonging to AVNMP and with other
active applications like an SNMP-based real-time plotter takes place through smallstate, named
caches that applications can create for storage, from which information can be retrieved. The
remainder of this report discusses AVNMP and some of the surprising temporal complexities it
introduces in greater levels of detail. While active networking provides the benefits previously
discussed, it also adds to the complexity of the network. The additional complexity of active
networks makes network and systems management a challenging and interesting problem
because it is a problem in which distributed computing can now more easily be brought to bear
because distributed computing algorithms can be more easily implemented and more quickly
deployed in an active network. It will no longer suffice for network analysts to focus solely on
traditional network performance characteristics such as load,delay, and throughput. Because
active networking enables application computation to be performed within the network, the
network performance must be optimized in tandem with applications. Delays through the
network may be slightly longer because of computation, yet more work is done on behalf of the
application. Thus metrics that include a closer association with applications are required. The
next part of this report explains the design and development of active networks that are capable
of predicting their own behavior and serve as a predictive active network management
framework.

2.3 PREDICTIVE SYSTEMS DISCUSSION

Imagine a time in the future where someone digs up a crusty old technical document. This
document makes its way into the hands of a few bright minds of the time who instantly recognize
it to be the foundation work of the late 20th century on a fledgling technology called "active
networking" that evolved into the current communications infrastructure. These bright minds
parse the document and attempt to figure out the reasoning behind the decisions outlined in the
manuscript. The names of the characters in the dialog are purposely reminiscent of ancient
Greece, foreshadowing the issues of rollback and tangled hierarchies to be discussed in later
chapters.

Glaucon: "It seems clear to me that to perform any type of prediction requires a projection
forward in time at a rate faster than wallclock time. I suppose that a closed system, one that is
totally self-contained, could be run forward in time very accurately. This is because it would
have no interaction with elements running at wallclock time."

14

Thrasymachus: "I don't believe it. Even a completely closed system could exhibit chaotic
behavior. And besides, even if a perfectly closed system existed, it would be of no use to anyone
since we could not interact with it."

Socrates: "This sounds like an interesting topic. I am not as intelligent as either of you, so
please help me follow where this discussion may lead. I believe, Glaucon, that you are searching
for a simplified, ideal model in which to formulate predictive capability for an active network.
Am I correct?"

Glaucon: "You are correct, Socrates."

Socrates: "We exist within the Universe and often attempt to predict events about ourselves
within the Universe: weather, investments, political and military results - consider the cleverly
planned, but ill-fated attempts of Athens against Sparta.* We were part of that event, yet would
have been hard pressed to have predicted its outcome. Is it better to be within the system or
outside of the system for which you are attempting to compute a prediction?"

Thrasymachus: "Your question, Socrates, is a moot one. We can never truly be outside of a
system and still interact with it. The mere act of measurement changes a system, however
negligible. We can never know the truth. Even the supposed perfect abstraction that we use to
model the world, Mathematics, cannot fully and completely describe itself, as Gödel has shown."

Glaucon: "Thrasymachus, do not be such a downer. We have come a long way in
understanding the world around us. The scientific method of observation, hypothesis, and
experimental validation continue to yield many new insights. Let us continue the quest for a
predictive system, while realizing that perfection may not be possible in practice."

Socrates: "Well said, Glaucon. In fact, you have mentioned the scientific method. I think
there is more to what you have said than you may realize. What is the fundamental activity in
developing a hypothesis? Or, let me state it this way: How does one determine the best
hypothesis if more than one appear equally valid in experimental validation?"

Glaucon: "One would prefer the simpler hypothesis. We seek to reduce complexity in our
understanding of the world around us."

Socrates: "Excellent. How does one measure complexity?"

Thrasymachus: "Socrates, I believe I know where you heading with this line of
reasoning...and it is pointless. Complexity is the size of the smallest algorithm or program that
describes the information of which you wish to measure the complexity. However, this
complexity is, in general, uncomputable. So again, you're leading us to a dead end as usual."

Glaucon: "Wait Thrasymachus, I wish to see where this would lead. What could this possibly
have to do with Active Networks or predictive network management?"

Socrates: "What was the new feature that active networks had added to communication that
never existed before?"

Glaucon: "Executable code within packets executed by intermediate nodes within the
network."

" This is the Pelopennesian War (431-404 B.C.) in which the defeat of the formerly liberal and free-thinking Athens
by Sparta led to Athen's defeatist attitude and subsequent trial and execution of Socrates.

15

Socrates: "Exactly. Active networks are much more amenable to algorithmic information. In
other words, it becomes much easier to transmit algorithms than it ever had before active
networks."

Thrasymachus: "Fine. I know where you are going here. You are going to say that we can
now transmit executable models once, rather than passive data many times. But think of the
overhead. What would you gain by transmitting a huge executable model of a system to a
destination when it interacts only rarely with that destination?"

Glaucon: "I see your point Thrasymachus. We need to know when it is advantageous to
transmit the model, and when to transmit only the passive data from that model. But how does all
of this relate to predictive network management?"

Socrates: "In order to obtain predictive capability from an active network, we can inject a
model of the network into the network itself. Sounds very Gödelian...if there is such a word."

Thrasymachus (sarcastic tone): "Very good. Now what about the effect that the model has
upon the network? How can the model predict its own impact upon the network? Shall we inject
a model of the model into the model? This is all nonsense. The system could never be perfectly
accurate and the overhead would make it too slow."

Socrates: "Thrasymachus, is the complexity of a network node smaller than the length of the
actual code on network node itself?"

Thrasymachus: "Unless the node and its code have been optimized to perfection, the
complexity will be smaller. This is obvious."

Socrates: "Will the model injected into the network be more, or less complex than the node
itself?"

Thrasymachus: "Less complex, Socrates. As we have already determined, the purpose of
science is to find the least complex representation of a phenomenon. That is what a model
represents."

Socrates: "Thrasymachus, will you agree that a communication network is by its very nature
a highly distributed entity?"

Thrasymachus: "Clearly, the network is widely distributed."

Socrates: "Thus, an application that takes advantage of that large spatial area would benefit
greatly, would it not?"

Thrasymachus: "Agreed."

Glaucon: "Are you suggesting, Socrates, that we use space to gain time in implementing our
lower complexity models?"

Socrates: "Certainly that should allow the models injected into the network to project ahead
of wallclock time."

Thrasymachus: "I see that you are attempting to trade off space, fidelity, and complexity in
order to gain time, but this still sounds like a very tough problem and the devil will be in the
details. Synchronization algorithms cannot gain the full processing power of all the processors in
the distributed system. This is because messages must arrive in the proper order causing some
parts of the system to slow down more than others waiting for messages to arrive in order."

16

Glaucon: "Optimistic distributed simulation algorithms do not slow down a priori. They
assume messages arrive in the proper order and processing always continues full speed. If a
message does arrive out of order at a processor, the processor must rollback to a previously
known valid state, send out anti-messages to cancel the effects of now possibly invalid messages
that it had sent, and continue processing from the rollback time incorporating the new message in

its proper order."
Socrates: "If each processor executes at its own speed based upon its input messages, then

each processor must have its own notion of time."

Glaucon: "That is correct. Each processor has its own Local Virtual Time."

Thrasymachus: "Let me understand this more concretely by a tangible analogy. Let us
suppose that messages are ideas, processors are mind, and time is the advancement of
knowledge. Each person advances his or her knowledge by listening to and combining ideas,
thus generating new ideas for others to improve upon."

Socrates: "Very good. Now suppose one was to discover a previously unknown work by
say the philosopher Heraclitus. Suppose also that this work was so advanced for its time that it
changed my thinking on previous work that I had done. I would need to go back to that previous
work, remember what I had been thinking at that time, incorporate the new idea from Heraclitus,
and generate a new result."

Thrasymachus: "But from society's perspective, this would not be enough. You would need
to remember to whom you had communicated your previous ideas and give them the new result.
This may cause those people, in turn, to modify their own past work."

Socrates: "Exactly. One can see the advancement of philosophy moving faster in some
people and slower in others. The people in whom it moves slowest can impede the advancement
for society in general. If the ideas (messages) could be transmitted and received m proper order
of advancement among individuals, then progress by society would be fastest; rather than having
to waste time and energy to go back and correct for new ideas."

Thrasymachus: "This sounds fantastic if the messages happen to arrive in causal order, that
is, in the order in which they should be received. It also sounds terribly inefficient if messages
arrive out-of-order."

Socrates: "Perhaps Complexity Theory can be of help here. It is known that the true measure
of complexity of a string is reached when the program that describes the string is the smallest
program that returns the string. As the program becomes smaller, it becomes more random. Thus,
the program optimized for size is the more random program. Can this be true of time as well? Is
the most compressed, thus most efficient, virtual time also the most random?"

Glaucon: "I am beginning to grasp what you are saying. If the rollbacks occur in random
sequence, then perhaps the network is optimized; if there is any non-randomness, or pattern in
the rollback sequence, then there is an opportunity to optimize the causality in some manner."

Thrasymachus (sarcastically): "Wonderful, another dead-end. There are no perfect tests for
randomness. You can't even detect it, much less optimize it using this method."

Socrates: "Unfortunately, Thrasymachus, you are correct. If there were answers to the deep
problems of randomness and complexity, and their relationship to time and space, these would
result in great benefits to mankind."

17

The next part of this report attempts to address the concepts raised in this discussion.
Chapters 3 and 4 discuss an implementation of the distributed network prediction framework that
is included on the CD in this report. This framework enables the rollback mechanism explained
by Socrates and Thrasymachus above. Chapter 5 discusses in detail the work on synchronization
algorithms leading towards AVNMP. Chapter 6 builds the theory for relating performance,
accuracy, and overhead of such a system. Chapter 7 considers many of Thrasymachus'
arguments against the existence of such a predictive system.

Notes

^[Bush et al., 1999] and [Bush, 2000] provide early thoughts on this concept.

18

AVNMP ARCHITECTURE

This chapter begins by describing the Active Virtual Network Management Prediction ar-
chitecture and follows with an operational example. While the system attributes predicted by the
Active Virtual Network Management Prediction Algorithm are generic, the focus of this report is
load prediction. In the discussion that follows, new meaning is given to seemingly familiar terms
from the area of parallel simulation. Terminology borrowed from previous distributed simulation
algorithm descriptions has a slightly different meaning in Active Virtual Network Management
Prediction; thus it is important that the terminology be precisely understood by the reader.

The Active Virtual Network Management Prediction Algorithm can be conceptualized as a
model-based predictive control technique where the model resides inside the system being con-
trolled As shown in Figure 3.1, a virtual network representing the actual network can be viewed
as overlaying the actual network. The system being controlled is a communications network
comprised of many intermediate devices, each of which is an active network node. This is an in-
herently parallel system; the predictive capability is enhanced by using a technique that takes
maximum advantage of parallelism.

Virtual System

Real System

Figure 3.1. Virtual Overlay.

A well-known problem with parallel simulation is the blocking problem illustrated in Figure
3.2, where processors A, B, C, and D are each driven by messages whose queues are shown at-
tached to the processor. The message time-stamps are indicated within the message. The mes-
sage value is irrelevant. Notice that processor D could execute the message with time stamp 9,
then it could receive the next message with time-stamp 6. This is a violation of causality and

19

could lead to an inaccurate result. There have been many proposed solutions to this problem
which are described in greater detail in the following chapters of this report. However, many so-
lutions depend on the processor that is likely to receive messages out of order waiting until the
messages are guaranteed to arrive in the proper order. This adds delay and thus reduces the over-
all system performance. The Active Virtual Network Management Prediction Algorithm follows
a well-known optimistic approach that allows all processors to continue processing without de-
lay, but with the possibility that a processor may have to rollback to a previous state. In addition
the Active Virtual Network Management Prediction Algorithm dynamically keeps the predic-
tions within a given tolerance of actual values. Thus the model-based predictive system gains
speed up due to parallelism while maintaining prediction accuracy.

Figure 3.2. Blocked Process.

3.1 AVNMP ARCHITECTURAL COMPONENTS

The Active Virtual Network Management Prediction algorithm encapsulates each Physical
Process within a Logical Process. A Physical Process is nothing more than an executing task de-
fined by program code. The Logical Process can be thinly designed to use the physical proc-
esses' software. If that is not possible, then the entire model can be designed into the Logical
Process. An example of a Physical Process is the packet forwarding process on a router. A Logi-
cal Process consists of a Physical Process and additional data structures and instructions that
maintain and correct operation as the system executes ahead of wallclock time as illustrated in
Figure 3.3. As an example, the packet forwarding Physical Process is encapsulated in a Logical
Process that maintains load values in its State Queue and handles rollback due to out-of-order
input messages or out-of-tolerance real messages as explained later. A Logical Process contains a
Send Queue (QS) and State Queue (SQ) within an active packet. In this implementation, the
packet is encapsulated inside a Magician SmartPacket which follows the Active Network Encap-
sulation Protocol (Alexander et al., 1997) format. The Receive Queue maintains newly arriving
messages in order by their Receive Time (TR). The Receive Queue is an object residing in an

20

active node's smallstate. Smallstate is state left behind by an active packet. The Magician (Kul-
karni et al., 1998) execution environment is used in the implementation described in this report.
The Magician execution environment allows any kind of information to be stored in smallstate
including Java objects; the Receive Queue is a Java object maintaining active virtual message
ordering°and scheduling. The Send Queue maintains copies of previously sent messages in order
of their send times. The Send Queue is necessary for the generation of anti-messages for rollback
described later. The state of a Logical Process is periodically saved in the State Queue. An im-
portant part of the architecture for network management is that the state queue of the Active
Virtual Network Management Prediction system is the network Management Information Base.
The Active Virtual Network Management Prediction values are the Simple Network Manage-
ment Protocol Management Information Base Object values. They are the values expected to oc-
cur in the future. The current version of the Simple Network Management Protocol (Rose, 1991)
has no mechanism for a managed object to report its future state; currently all results are reported
assuming the state is valid at the current time. In working on predictive Active Network Man-
agement there is a need for managed entities to report their state information at times in the fu-
ture. These times are unknown to the requester. A simple means to request and respond with
future time information is to append the future time to all Management Information Base Object
Identifiers that are predicted. This requires making these objects members of a table indexed by
predicted time. Thus a Simple Network Management Protocol client that does not know the ex-
act time of the next predicted value can issue a get-next command appending the current time to
the known object identifier. The managed object responds with the requested object valid at the
closest future time as shown in Figure 3.4.

LVT

State Queue (SQ) Local Virtual Time

GVT

Send Queue (QS) Global Virtual Time

A

Lookahead

e
Physical Process (PP) Tolerance

Logical Process

ANEP Packet

Real Time (RT)

Send Time (TS)

Receive Time (TR)

Anti-Toggle (A)

Sender (S)

Receiver (R)

Message (M)

ANEP packet

Receive Queue (QR)

Small State

Execution Environment

Figure 3.3. Active Global Virtual Time Calculation Overview.

21

Managed Object

Active Packet

Network
Management Client getnext 1.3.6.1.x.x.x.x.now

getnextresponse 1.3.6.1 .x.x.x.x.future

Figure 3.4. Legacy Network Management Future Time Request Mechanism.

The Logical Process also contains its notion of time, known as Local Virtual Time (LVT),
and a Tolerance (0). Local Virtual Time advances to the of the next virtual message that is proc-
essed. Tolerance is the allowable deviation between actual and predicted values of incoming
messages. For example, when a real message enters the load prediction Logical Process, the cur-
rent load values are compared with the load values cached in the State Queue of the Logical Pro-
cess. If predicted load values in the State Queue are out of tolerance, then corrective action is
taken in the form of a rollback as explained later. Also, the Current State (CS) of a Logical Proc-
ess is the current state of the structures and Physical Process encapsulated within a Logical Proc-
ess.

3.1.1 Global Virtual Time

The Active Virtual Network Management Prediction system contains a notion of the com-
plete system time known as Global Virtual Time (GVT) and a sliding window of length Looka-
head time (A). Global Virtual Time is required primarily for the purpose of throttling forward
prediction in Active Virtual Network Management Prediction; that is, it governs how far into the
future the system predicts. There have been several proposals for efficient determination of
Global Virtual Time, for example (Lazowaska and Lin, 1990) The algorithm in (Lazowaska and
Lin, 1990) allows Global Virtual Time to be determined in a message-passing environment as
opposed to the easier case of a shared memory environment. Active Virtual Network Manage-
ment Prediction allows only message passing communication among Logical Processes. The al-
gorithm in (Lazowaska and Lin, 1990) also allows normal processing to continue during the
determination phase. A logical process that needs to determine the current Global Virtual Time
does so by broadcasting a Global Virtual Time update request to all processes. Note that Global
Virtual Time is the minimum of all logical process Local Virtual Times and the minimum mes-
sage receive time that is in the system. An example is shown in Figure 3.5. The Active Global
Virtual Time Request Packet notices that the logical process with a Global Virtual Time of 20 is
greater than the last logical process that the Active Global Virtual Time Request Packet passed
through and thus destroys itself. This limits unnecessary traffic and computation. The nodes that
receive the Active Global Virtual Time Request Packet forward the result to the initiator of the
Global Virtual Time request. As the Active Global Virtual Time Request Packets return to the
initiator, the last packet is maintained in the cache of each logical process. If the value of the is

22

greater than or equal to the value in the cache, then the packet is dropped. Again, this reduces
traffic and computation at the expense of space.

GVT Initiator

J I Small State I Active GVT Request

Local Min 12 Dropped

Active GVT Response

Local Min 12

Figure 3.5. Active Global Virtual Time Calculation Overview.

3.1.2 AVNMP Message Structure

Active Virtual Network Management Prediction messages contain the Send Time (TS), Re-
ceive Time (TR), Anti-toggle (A) and the actual message object itself (M). The message is en-
capsulated in a Magician SmartPacket which follows the ANEP standard. The Receive Time is
the time this message is predicted to be valid at the destination Logical Process. The Send Time
is the time this message was sent by the originating Logical Process. The "A" field is the anti-
toggle field and is used for creating an anti-message to remove the effects of false messages as
described later. A message also contains a field for the current Real Time (RT). This is used to
differentiate a real message from a virtual message. A message that is generated and time-
stamped with the current time is called a real message. Messages that contain future event infor-
mation and are time-stamped with a time greater than the current wallclock time are called vir-
tual messages. If a message arrives at a Logical Process out of order or with invalid information,
it is called a false message. A false message causes a Logical Process to rollback. The structures
and message fields are shown in Table 3.1, Table 3.2 and in Figure 3.3. The Active Virtual Net-
work Management Prediction algorithm requires a driving process to predict future events and
inject them into the system. The driving process acts as a source of virtual messages for the Ac-
tive Virtual Network Management Prediction system. All other processes react to virtual mes-
sages.

23

3.1.3 Rollback

A rollback is triggered either by messages arriving out of order at the Receive Queue of a
Logical Process or by a predicted value previously computed by this Logical Process that is be-
yond the allowable tolerance. In either case, rollback is a mechanism by which a Logical Process
returns to a known correct state. The rollback occurs in three phases. In the first phase, the state
is restored to a time strictly earlier than the Receive Time of the false message. In the second
phase, anti-messages are sent to cancel the effects of any invalid messages that had been gener-
ated before the arrival of the false message. An anti-message contains exactly the same contents
as the original message with the exception of an anti-toggle bit which is set. When the anti-
message and original message meet, they are both annihilated. The final phase consists of exe-
cuting the Logical Process forward in time from its rollback state to the time the false message
arrived. No messages are canceled or sent between the time to which the Logical Process rolled
back and the time of the false message. These messages are correct; therefore, there is no need to
cancel or re-send them, which improves performance and prevents additional rollbacks. Note that
another false message or anti-message may arrive before this final phase has completed without
causing problems. The Active Virtual Network Management Prediction Logical Process has the
contents shown in Table 3.1, the message fields are shown in Table 3.2, and the message types
are listed in Table 3.3 where t is the wallclock time at the receiving Logical Process.

Table 3.1. AVNMP Logical Process Structures

Structure Description
Receive Queue (QR)

Send Queue (QS)

Local Virtual Time

Current State (CS)

State Queue (SQ)

Sliding Lookahead Window (SLW)

Tolerance (0)

Ordered by message receive time (TR)

Ordered by message send time (TS)
LVT = infRQ

State of the logical and physical process

States (CS) are periodically saved

SLW=(t,t + A)
Allowable deviation

Table 3.2 AVNMP Message Fields.

Field Description
Send Time (TS)
Receive Time (TR)

Anti-toggle (A)

Message (M)
Real Time (RT)

LVT of sending process when message is sent
Scheduled time to be received by receiving process

Identifies message as normal or antimessage
The actual contents of the message

The wallclock time at which the message originated

Table 3.3 AVNMP Message Types.

Virtual Message RT>t

Real Message RT<t

24

3.1.4 Space-Time Trade-offs

The partitioning of physical processes into logical processes has an effect on the performance
of the system. Active networks allow the possibility of physical processes to dynamically merge
into logical process. In addition, both virtual and anti-messages can be fused on their way to their
destination. There are several ways that this can occur. The first is a straightforward combination
of data within the virtual messages when they reach a common node. Another fusion technique is
to maintain a cache in each node of the last message that traveled through the node on the way to
the message's destination for each source/destination pair. When a message arrives at a node to
be forwarded towards its destination, it can check whether a message had been previously cached
and if its Receive Time is greater than that of the current message. If so, this message knows it is
going to cause a rollback. The message then checks whether it would have affected the result, for
example, via a semantic check. If it would have had no effect, the message is discarded. In the
specific case of load prediction, the change in load that the out-of-order message creates within
the system can be easily checked. If many messages discover they would cause rollback on the
way towards their destination, the destination logical process could perhaps be moved closer to
the offending message generator logical process. If the message is a real message and the cached
message is virtual and their times are not too far apart, a check can be made at that point as to
whether a rollback is needed. If no rollback is needed, the real message can be dropped.

Virtual messages can be cached as they travel to their destination logical process. The cache
uses a key consisting of the source-destination node of the message. Only the last message for
that source-destination pair is cached. When the next message passes through the intermediate
node matching that source-destination pair, the new message compares itself with the cached
message. This is shown in Figure 3.6. If one exists and has a larger time-stamp, then a rollback is
highly likely, and steps can be taken to mitigate the effects of the rollback. After the comparison,
the old message is replaced in the cache with the new message. If many such rollback indications
appear in the path of a virtual message, the destination process can be slowed or move itself to a
new spatial location to mitigate the temporal effects of causality violations. Also, if a new mes-
sage passing through an intermediate node is real, and the cached message is virtual, and they are
within the same tolerance of time and value, the real message will destroy itself since it is redun-
dant.

Logical Processes, because they are active packets, can move to locations that will improve
performance. Logical Processes can even move between the network and end systems. In an ex-
treme case of process migration, the Logical Processes are messages that install themselves only
where needed to simulate a portion of the network as shown in Figure 3.7. Notice that choosing
to simulate a single route always results in a feed-forward network.

25

LPD

RT:32 Src:A Dst:B

SmallState

Rollback is Likely

LPC

RT:20 Src:A Dst:B —►■ RT:15Src:ADst:B

SmallState

No Rollback Indication

Figure 3.6. Active Rollback Mitigation.

Source f |_P l

o—^

Destination

i DP }

i DP ;

Figure 3.7. Partial Spatial Network Prediction.

3.1.5 Enhanced Message Capabilities

The active packet allows the virtual message to be enhanced with more processing capability.
The virtual message can use this capability to refine its prediction as it travels through the net-
work. In the Active Virtual Network Management Prediction architecture described thus far,
there is a one-to-one correspondence between virtual messages and real messages. While this
correspondence works well for adding prediction to protocols using a relatively small portion of
the total bandwidth, it would clearly be beneficial to reduce message load, especially when at-
tempting to add prediction of the bandwidth itself. There are more compact forms of representing
future behavior within an active packet besides a virtual message. For relatively simple and eas-
ily modeled systems, only the model parameters need be sent and used as input to the logical
process on the appropriate intermediate device. Note that this assumes that the intermediate net-
work device's Logical Process is simulating the device operation and contains the appropriate

26

model. However, because the payload of a virtual message is exactly the same as a real message,
it can be passed to the actual device and the result from the actual device is intercepted and
cached. In this case, the Logical Process is a thin layer of code between the actual device and
virtual messages primarily handling rollback. An entire executable load model can be included
within an active packet generated by the DP and executed by the Logical Process. When the ac-
tive packet reaches the target intermediate device, the load model provides virtual input mes-
sages to the and the payload of the virtual message passed to the actual device as previously
described. A Streptichron is an active packet facilitating prediction as shown in Definition 3.1,
which implements any of the above mechanisms.

Streptichron =
Input (Monte-Carlo) Model
Model Parameters (Self-Adjusting)
Virtual Message (Self-Adjusting)

(3.1)

Autoanaplasis is the self-adjusting characteristic of streptichrons. For example, in load pre-
diction, use the transit time to check prior predictions. Figure 3.8 shows an overview of autoana-
plasis. General purpose code contained within the packet is executed on intermediate nodes as
the packet is forwarded to its destination.

Virtual Message
Network Device

(switch, router, hub, etc...)

Source
Code Data

NodeOS

(SmallStatei)

Figure 3.8. Self Adjusting Data.

For example, a packet containing a prediction of traffic load may notice changes in traffic
that influence the value it carries as the packet travels towards its destination. The active packet
updates the prediction accordingly.

3.1.6 Multiple Future Event Architecture

It is possible to anticipate alternative future events using a direct extension of the basic Ac-
tive Virtual Network Management Prediction algorithm (Tinker and Agra, 1990). The driving
process generates multiple virtual messages, one for each possible future event with corre-
sponding probabilities of occurrence, or a ranking, for each event. Instead of a single Receive
Queue for each Logical Process, multiple Receive Queues for each version of an event are cre-

27

ated dynamically for each Logical Process. The logical process can dynamically create Receive
Queues for each event and give priority to processing messages from the most likely versions'
Receive Queues. This enhancement to Active Virtual Network Management Prediction has not
been implemented. This architecture for implementing alternative futures, while a simple and
natural extension of the Active Virtual Network Management Prediction algorithm, creates addi-
tional messages and increases the message sizes. Messages require an additional field to identify
the probability of occurrence and an event identifier. Alternative future events can also be con-
sidered at a much lower level, in terms of perturbations in packet arrivals. Perturbation Analysis
is described in more detail in (Ho, 1992).

3.1.7 Magician and A VNMP

The Active Virtual Network Management Prediction Algorithm has been built upon the Ma-
gician (Kulkarni et al., 1998) Execution Environment. This section discusses the development
and architecture at the Execution Environment level. As discussed in the beginning of this report,
Magician is a Java-based Execution Environment that was used to implement the Active Virtual
Network Management Prediction Algorithm because at the time this project started, Magician
had the greatest flexibility and capability. This included the ability to send active packets as Java
objects. Figure 3.9 shows the Java class structure of the Active Virtual Network Management
Prediction Algorithm implementation. Time is critical in the architecture of the system; thus,
most classes are derived from class Date. Class AvnmpTime handles relative time operations.
Class Gvt uses active the GvtPackets class to calculate global virtual time. Class AvnmpLP han-
dles the bulk of the processing including rollback. Class Driver generates and injects real and
virtual messages into the system. The PP class either simulates, or accesses, an actual device on
behalf of the Logical Process. The PP class may not need to simulate the device because the
payload of a virtual message is exactly the same as a real message; thus, the payload of the vir-
tual message can be passed to the actual device and the result from the actual device is inter-
cepted and cached. In this case, the Logical Process is a thin layer of code between the actual
device accessed by the PP class. The GvtPacket class implements the Global Virtual Time
packet which is exchanged by all logical and driving processes to determine global virtual time.
Currently only the virtual message form of a streptichron has been implemented. The active
packets have been implemented in both ANTS (Tennenhouse et al., 1997) and SmartPackets
(Kulkarni et al., 1998).

28

Date

AvnmpTime

Gvt

AvnmpLP

Magician
SmartPackets

GvtPacket

Streptichron

SNMP Agent

SNMP Client

Driver PP

Abstract Class

Figure 3.9. Active Virtual Network Management Protocol Class Hierarchy.

3.2 EXAMPLE DRIVING PROCESSES

3.2.1 Flow Prediction

Network flows are comprised of streams of packets. The ultimate goal for network manage-
ment of flows is to allocate resources in order to provide the best quality of service possible for
all user flows within the network. However, knowledge of how best to allocate resources is
greatly aided by knowledge of future usage. Active Virtual Network Management Prediction
provides that future usage information. The Active Virtual Network Management Prediction
driving processes generate virtual load messages. The manner in which the prediction is accom-
plished is irrelevant to Active Virtual Network Management Prediction. Some example tech-
niques could include a Wavelet-based technique described in (Ma and Ji, 1998) or simple
regression models (Pandit and Wu, 1983).

3.2.2 Mobility Prediction
Proposed mobile networking architectures and protocols involve predictive mobility man-

agement schemes. For example, an optimization to a Mobile IP-like protocol using IP-Multicast
is° described in (Seshan et al., 1996). Hand-offs are anticipated and data is multicast to nodes
within the neighborhood of the predicted handoff. These nodes intelligently buffer the data so
that no matter where the mobile host (MH) re-associates after a handoff, no data will be lost.
Another example (Liu et al., 1995) (Liu, 1996) proposes deploying mobile floating agents, which
decouple services and resources from the underlying network. These agents would be pre-
assigned and pre-connected to predicted user locations.

The Active Virtual Network Management Prediction driving process for mobile systems re-
quires accurate position prediction. A non-active form of Active Virtual Network Management

29

Prediction has been used for a rapidly deployable wireless mobile network as described in (Bush,
1997). Previous mobile host location prediction algorithms have focused on an aggregate view of
mobile host location prediction, primarily for such purposes as base-station channel assignment
and base-station capacity planning. Examples are a fluid flow model (Thomas et al., 1988) and
the method of Hong and Rappaport (Hong and Rappaport, 1986). A location prediction algo-
rithm accurate enough for individual mobile host prediction has been developed in (Liu and Jr.,
1995). A brief overview of the algorithm follows because the algorithm in (Liu and Jr., 1995) is
an ideal example of a driving process for Active Virtual Network Management Prediction and
demonstrates the speedup that Active Virtual Network Management Prediction is capable of pro-
viding with this prediction method. The algorithm allows individual mobile hosts to predict their
future movement based on past history and known constraints in the mobile host's path.

All movement ({M(k,t)}) is broken into two parts, regular and random motion. A Markov
model is formed based on past history of regular and random motion and used to build a predic-
tion mechanism for future movement as shown in Equation 3.1. The regular movement is identi-
fied by Skl where S is the state (geographical cell area) identified by state index k at time t and the
random movement is identified similarly by X{k,t). M(k,t) is the sum of the regular and random
movement.

{M(k,t)} = {Sjk<K,te T) + {X{k,t)\k<K,te T) (3.1)

{X(k,t)} = {M(k,t)} - ({Mc(k,t)\k< K,te T) + [M,(k,t) \k<K,te T}) (3.2)

The mobile host location prediction algorithm in (Liu and Jr., 1995) determines regular
movement as it occurs, then classifies and saves each regular move as part of a movement track
or movement circle. A movement circle is a series of position states that lead back to the initial
state, while a movement track leads from one point to another distinct point. A movement circle
can be composed of movement tracks. Let Mc denote a movement circle and Mt denote a move-
ment track. Then Equation 3.2 shows the random portion of the movement.

The result of this algorithm is a constantly updating model of past movement classified into
regular and random movement. The proportion of random movement to regular movement is
called the randomness factor. Simulation of this mobility algorithm in (Liu and Jr., 1995) indi-
cates a prediction efficiency of 95%. The prediction efficiency is defined as the rate over the
regularity factor. The prediction accuracy rate is defined in (Liu and Jr., 1995) as the probability
of a correct prediction. The regularity factor is the proportion of regular states, {Skl}, to random
states {X(k,t)}. The theoretically optimum line in (Liu and Jr., 1995, p. 143) may have been bet-
ter labeled the deterministic line. The deterministic line is an upper bound on prediction per-
formance for all regular movement. The addition of the random portion of the movement may
increase or decrease actual prediction results above or below the deterministic line. A theoreti-
cally optimum (deterministic) prediction accuracy rate is one with a randomness factor of zero
and a regularity factor of one. The algorithm in (Liu and Jr., 1995) does slightly worse than ex-
pected for completely deterministic regular movement, but it improves as movement becomes
more random. As a prediction algorithm for Active Virtual Network Management Prediction, a
state as defined in (Liu and Jr., 1995) is chosen such that the area of the state corresponds exactly
to the Active Virtual Network Management Prediction tolerance, then based on the prediction
accuracy rate in the graph shown in (Liu and Jr., 1995, p. 143) the probability of being out of tol-
erance is less than 30% if the random movement ratio is kept below 0.4. An out-of-tolerance
proportion of less than 30% where virtual messages are transmitted at a rate of Xm = 0.03 per
millisecond results in a significant speedup as shown in Chapter 6.

30

3.2.3 Vulnerability Prediction

Network vulnerability to information warfare attack can be quantified and vulnerability paths
through the network can be identified. General Electric Corporate Research & Development has
a patent disclosure on such a system. The results of this vulnerability system are used to identify
the most likely path of an attack, thus predicting the next move of a knowledgeable attacker.

Once an attack has been detected, the network command and control center can respond to
the attack by repositioning safe-guards and by modifying services used by the attacker. However,
cutting-off services to the attacker also impacts legitimate network users, and a careful balance
must be maintained between minimizing the threat from the attack and maximizing service to
customers. For example, various stages of an attack are shown in Figure 3.10. Since the alloca-
tion of resources never changes throughout the attack in this specific scenario, the vulnerability
of the target increases significantly with each step of the attack.

A probabilistic and maximum flow analysis technique for quantifying network vulnerability
have been developed at General Electric Corporate Research & Development (Bush and Barnett,
1998). The results from that work are the probability of an attacker advancing through multiple
vulnerabilities and the maximum flow or rate. Using this information, the logical processes in
Figure 3.11 can predict when and where the attacker is likely to proceed and can update the
graphical interface with this information before the attack is successful. This allows time for
various countermeasures to be taken or the opportunity to open an easier path for the attacker to
a "fish bowl," a portion of the network where attackers are unknowingly steered in order to
watch their activity. Virtual messages are exchanged between the Information Warfare Com-
mand and Control and the logical processes in Figure 3.11.

VGI: /home/bushsf/i>rojectj/iw/*uUss/gml/«>cainpl#.giiil

FiIv'. 'Afc-crilhttv iilil' .Prö'.vf lib*'

a i-a<! yi' 1^.0 sj,o

u ■J

]lost A V«: 2 / *

•i 7 \ y

/ 1/
•Vectoi' 'v / \.J Hi- C.V .1 4 Kost3VuJ 1

a
■Ait£jci»r

H:»rHVia2
/

. i&^tÄiKÖÄÖSSSw-A^&äl«? . ■ . .. fiiSäSiSÄsISi«;

Figure 3.10. An Example of an Attack in Progress.

31

Information
Warfare

Command and
Control

Logical
Process

Node 1

Node 2

Logical Y Vulnerability
Process o

Next Predicted
Step in Attack

Figure 3.11. An Overview of Information Warfare Attack Prediction.

32

4

AVNMP OPERATIONAL EXAMPLES

The driving processes can make local predictions about load, vulnerability (Bush and
Barnett, 1998), and mobile location (Bush, 1997). Load can be used to predict local QoS,
congestion, and faults. The focus of this report is on the development and application of the
Active Virtual Network Management Prediction algorithm and not the predictive methods within
the driving processes. The primary purpose of Active Virtual Network Management Prediction is
to distribute local changes throughout the network in both space and time.

Various predictive techniques can be used such as regression-based methods based on past
history or similar techniques in the Wavelet domain. Since the Active Virtual Network
Management Prediction implementation follows good modular programming style, the driving
process has been decoupled from the actual prediction algorithm. Active Virtual Network
Management Prediction has been tested by executing it in a situation where the outputs and
internal state are known ahead of time as a function of the driving process prediction. The
prediction within the driving processes is then corrupted and the Active Virtual Network
Management Prediction output examined to determine the effect of the incorrect predictions on
the system.

4.1 AVNMP OPERATIONAL EXAMPLE

A specific operational example of the Active Virtual Network Management Prediction
Algorithm used for load prediction and management is shown in Figures 4.2 through 4.10. This
particular execution log is from the operation of Active Virtual Network Management Prediction
running on a simple three node network with an active end-system and two active intermediate
nodes:"AH-1, AN-1, AN-2. The legend used to indicate Active Virtual Network Management
Prediction events is shown in Figure 4.1.

The Active Virtual Network Management Prediction system illustrated throughout this report
has been developed using the Magician (Kulkarni et al., 1998) active network execution
environment; the driving processes, logical processes, and virtual messages are implemented as
Magician Smartpackets.

33

_rj Netscape: Html Debugger for AH-1

Hie to« view to Coiuicnicaior

Back : FmwavJ Retold
41 A
Home GsatCli

■Hi.. . «* .a£.: ;
Nels:aj:e Pint; ■ .■Serurty

12
^* Bookmojke ^t LocaiiOl: fe i 1c: /ham:: /tuoho f/? r O] = c t a/ofi/ls cr/T: /I ^!" w/ioj'o RC OlCD*

L^ Currert Prcject Doctirentaiion C^fToch Reportl ^ Btbtsx BibScgraphy jaarcii Q^Ebafcs £j Jo

Key

Symbol Meaning Symbol

jfp£;'-| SendGVTMessage c£>

cj> Send Virtual Message ^t

Receive CVT f-\
Message **y
Receive Virtual «.
Message *^

Scute

M-:

Input to Physical
Process

JUjr^

Meaning

Send Anti-Message

Send Real Message

Receive Anti-Message

Receive Real Message ■■;■
I

Rollback '*

i I
Output from Physical Process g

D
•& ^ ag» Ja'sa-ll

Figure 4.1. Legend of Operational Events.

~ rj Netscape: Html Debugger for Att-l -
Fä« EJl Vfiw GU Cuiwiufiijilu -*(((

' \ 4L £ d & a. &. t* rf 2 ;! F?fic Fnr.^in Raran HTHTP vwrrn wv«r^pft Prirtf .Vri.r»?

;j ;_$" Booknaiks A Location. [fUe./Wiie/0.i3.i3C/V.u iec.3/.ui/_uy/luy. 3 /j (ßr What's Rotated

;! C^Cuireot P*o|5;: Docinertxb) jj "ech Reports ^ 3lbteN Bio logrdphy Sswct" f_^ Booka (^[Jouin

Kode AH-t:Fri Fell 12 10:04:20 EST 1999 5
Input Message Real Time LVT Debug Level Output Message : 5

■ i
-■ i

■ '■ I
1844S 0 UV1 D
19229 60000 GVTD

19761 600ÜO KHCQJJ ••
19719 60000 SNDO_D c>AN-l ■..■.:■-; i

21180 120000 PVT_D

21815 120ÜÜ0 KKCl) D \
217*J 120000 SNDOD C>AN 1

232X1 120TXK) OVTJ)
23936 120000 RECO D

23869 120000 SNDO_D VAN 1

IC««M <<ww\ r\tn\n?o r» .

Irf li^'J?»*."-:>.«; 1 Hi %■ Vi si'*» J

Figure 4.2. Active Node AH-1 Driving Process.

The logical process and driving process are injected into the network. The logical process
automatically spawns copies of itself onto intermediate nodes within the network while the
driving processes migrate to end-systems and begin taking load measurements in order to predict
load and inject virtual messages. At the start of the Logical Process's execution, Local Virtual

34

Time and Global Virtual Time are set to zero, lookahead (A) is set to 60,000 microseconds, and a
(0) of 1,000 bytes/second is allowed between predicted and actual values for this process.

The description of the algorithm begins with an Active Virtual Network Management
Prediction enabled network that has just been turned on and is generating real messages. The real
messages in this case are randomly generated Magician Smartpackets running over a local area
network. The driving process, is located on active node, AH-1. The driving process generates
predictions about usage in the near future and injects virtual messages based on those predictions
as shown in Figure 4.2. Figure 4.2 illustrates the log format used for the top-level view of all the
Active Virtual Network Management Prediction Logical Processes. The left-most column shows
incoming messages, the next column shows the wallclock time in microseconds, the next column
shows the Local Virtual Time, the next column is a link to more detailed information about the
event, and the right-most column shows any output messages that are generated. Both the input
and output messages indicate the type of message by the legend shown in Figure 4.1 and are
labeled with the source or destination of the message. Active node AH-1 shows two virtual
active packets and one real active packet sent to AN-1.

4.1.1 Normal Operation Example
In Figure 4.3, active node AN-1 has begun running and receives the first virtual message

from AH-1. AN-l's Logical Process must first determine whether it is virtual or real by
examining the field. If the active packet is a virtual active packet, the Logical Process compares
the message with its Local Virtual Time to determine whether a rollback is necessary due to an
out-of-order message. If the message has not arrived in the past relative to the Logical Process's
Virtual Time, the message then enters the Receive .Queue in order by Receive Time. The Logical
Process takes the next message from the Receive Queue, updates its Local Virtual Time, and
processes the message (shown below the current view in Figure 4.3. Figure 4.4 shows the AN-1
state after receiving the first virtual message.

If an outgoing message is generated, as shown in Figure 4.5, a copy of the message is saved
in the State Queue, the Receive Time is set, and the Send Time is set to the current Local Virtual
Time. The message is then sent to the destination Logical Process. If the virtual message arrived
out of order, the Logical Process must rollback as described in the previous section. Figure 4.6
shows AN-l's Local Virtual Time, Send Queue contents, contents, and contents after the
received virtual message has been processed and forwarded. Figure 4.7 shows AN-l's state after
sending the first virtual message.

35

Ntf(*iü(jv: rtlrnl Dvtlwjgvr (ur AV-t

Fin F-jil Vtm* .In. r.nnirtiiiwtri HH|> |

; $ £ ä &
üca-cn PJ^tocopc Hint scajnv/ : ■■W; ; =a» t-o-**^.! Kaota »-oro

1 -^J" MxUKut» £ -ccaot ttiic^hoit-c 'tuot-.or/prc:ccWon/109/Loi? / Sfp" "ifirO HaolM !

• -*Jj fli.lfwl Pni mi Dili: n-filMia n _JTM:'I -MJi ll i ^ RÄilHA RiHI (}'<l:ltiy SM*I:*I ^j R alts :^_j .hiuri

Node AN-LPrifeb 12 16.04:14 CST 1999 \A.

Input Message Real Time LVI Debug Level Output Message

7523 0 GVT D ^
SUM ü U 0 -f

105(10 0 LCJ1 '.*
12127 0 i.p_n "1
13711 0 LP_D k
1513L ü W ü g
16S91 0 i.rn ;1
18134 0 i.p_n jg
19744 0 LPD 3
21254 0 W D i
229(16 0 um i

1
1

24S57 0 LEJi
26449 0 LP_D

28240 0 W 0 '4

i 30030 0 h?J)
31735 0 um k
32396 0 RECQ_D 1

AH-L=> 32306 0 U_E> !
33411 0 GVT D
34150 0 GVT D
34697 0 GVT D

35228 0 GVT D I
36025 0 GVT D
36730 0 GVT D 1
373S8 0 GVT D

38058 0 GVT D SÜS^;.':|AH 1 i
Bfi.-. i i: •> "aü ä." lal vS

Figure 4.3. Active Node AN-1 Receives a Virtual Message.

4.1.2 Out-of-Tolerance Rollback Example

An example of out of tolerance rollback is illustrated in Figure 4.8. A real message arrives
and its message contents are compared with the closest saved state value. The message value is
out of tolerance; therefore, all state queue values with times greater than the receive time of the
real message are discarded.

The send queue message anti-toggle is set and the anti-message is sent. The invalid states are
discarded. The rollback causes the Logical Process to go back to time 120000 because that is the
time of the most recent saved state that is less than the time of the out-of-tolerance message's
Receive Time.

36

Active Virtual Network Management Prediction (AVNMP) Algorithm

Send Queue (QS)

Empty

Virtual
Messages i

Anti-messages Real-time
Messages

11 comparison false, then roll back and
send anti-messages.

| 1000 | 0 = maximum beyond which
'—' ' a rollback occurs back to

last known state value
_X»

1 ^
Simulation
Component t = Simulation

j: Cache

State Queue (SO)

ir~i
Comparison

^

Output

If comparison true, then
continue sending virtual

messages.

LVT-Local Virtual TimefFasfer;

 ; V
200,0001 A = maximum difference

between two clocks

Logical Process
• Two times message

overhead of conventional
non-predictive network.
With optimization
approximately the
same overhead as
conventional system.

• Performance determined
by amount of lookahead
and amount of tolerance.

Virtual Messages j

Receive
Queue
(QR)

2,000

Input

Real-Time
Messages (RT)

Real Time (RT)
Send Time (TS)
Receive Time (TR)
Anti-Toggle (A)
Sender (S)
Receiver (R)
Message(M)

Active
Intermediate

Network Node

*s

Active
Multiple Future Event Intermediate
Architecture (optional) Network Node

 t

GVT-Global Virtual Time

Figure 4.4. Active Node AN-1 After Receiving Virtual Message.

37

rj Metscape: Html uebugger for AN-1

FII8 ECU! VBvV 53 CoraminJcatcr Help

i •£. £■ 3
Hjmt* Staith Ndlsi;a(.w 3iinl ;Swi.urt.y ■■^ '■': Eact Furwa J HäkJail

;; ;^* Bjuhraffcs A Luctliuii: ßti.l.eVnorr.e/'jushsf/proTects/arL/lDCT/lc f[flUTYratyRibtuü

:; ^jf.lFiPlt Pnjfl- t Dnriwvntal inn rjTprt Rftnnrts Qj Ribtn>: Rlhlifgraphy Sasfrii fj 3lflks £j In

49720 60000 PF_D -i

50207 60000 IT D |^| <
50788 60000 PP D

J 51644 60000 UV1 D

52714 60000 RECQ D ü
52563 60000 SNDO D OAN-2

54139 60000 RHCU D

56007 60000 LF D ti
57017 60000 RECQ D H

AH-lO 56950 60000 LP_D i
55669 60000 CVT D

59618 60000 RECO D
55

60594 60000 Ji i
61302 6Ü0ÜU KECy O ii
61927 60000 CVT D

S2893 60000 RECO D $
63645 60000 RECO O ;|
64438 60000 -1.JD

i 65318 60000 RECQ_D

6S10S 120000 RECO D
i

668S5 120000 RECQ D

4- 67700 120000 RECO D i

1 ,-: 1 X

|a?!i£H30>'./^ -'1 :;(->i '■■•£. 33 O >/ JI

Figure 4.5. Active Node AN-1 Sends a Virtual Message.

Figure 4.12 shows the first virtual message received by AN-2. Figure 4.11 shows the AN-1
state after the first rollback. The anti-messages are the messages in the Send Queue that are
crossed out. When these messages are sent as anti-messages, the anti-toggle bit is set. Also
shown in Figure 4.11 is the discarded State Queue element that is no longer valid.

38

XJ Netscape:"»\i-l 6ÜS34IHSiAIt IT

Hie Eat view 33 coitmnicacr Help

Eac<> FurwatJ 5tatt.ll N*lsi:aj.u »linl

ij" BJuHiak» A Luttliuii: ftCi.-e :/jo»e/ja8mC/proiect»/aa/LDg/lc /| €3* V»tal'> Bah.«!

Omit PnjB-t nnn«i»»itallni> £$Tnci Barinits Qj RIM»>: Bihlrgraphy Sowrh rjj =»mla Cj l/i|

LVT: 60000

LM: 9223372036854775807

Said Queue: f
Real Message**" PacketID-> 110
Source: AN-1
Receive Time: 120000
Destination: AN-2
Said Time: 6GC00
Payload:
Sn::AH-l
Dsf null
Val:2000.0]

Recehre Queue: fl _.;:„ ; .

StBteQu«ue:[
State Save Time: 0 State 1629.0,
State Save Time: 6ÜUU0 State; 2UUÜ.UJ

■y-i. •-<£. -gg» ea v-

Figure 4.6. Active Node AN-1 Queue Contents after First Virtual Message Arrival.

4.1.3 Example Performance Results

Figure 4.13 shows the Local Virtual Time of node AN-1 versus wallclock time. Note that the
logical process on AN-1 quickly predicted load 200,000 milliseconds ahead of wallclock time
and then maintained the 200,000 millisecond lookahead. The sudden downward spikes in the
plot are rollbacks.

39

Active Virtual Network Management Prediction (AVNMP) Algorithm

Send Queue (QS)

Real-time
Messages

If comparison false, then roll back and
send anti-messages.

1 S = maximum beyond which
a rollback occurs back to

last known state value
_A

Output

If comparison true, then
continue sending virtual

messages.

LVT-Local Virtual T\me(Faster)
<

^y^
1200,0001 A = maximum difference

between two clocks

Logical Process
• Two times message

overhead of conventional
non-predictive network.
With optimization
approximately the
same overhead as
conventional system.

• Performance determined
by amount ot lookahead
and amount of tolerance.

Virtual Messages \

Receive
Queue
(QR)

4

19.719
60,000
60.000

0
AH1
AN1
2,000

Input

Real-Time
Messages(RT)

Real Time (RT)
Send Time (TS)
Receive Time (TR)
Anti-Toggle (A)
Sender (S)
Receiver (R)
Message (M)

Active
Intermediate

Network Node

V

Active
Multiple Future Event Intermediate

Architecture (optional) Network Node

 J ~v
GVT-Global Virtual Time

Figure 4.7. Active Node AN-1 after Sending Virtual Message.

40

"'NetscäöeTHtmT'WWBSS"för"ÄN-i

File Edit Vleiv 3D CorDininicacr Help

s£ 2 3
HjBI«

cd. sf

ij:* Bjulurtffcs ,£ Utclfcm: pfilei/noit.e/justee/proiects/an/lpq/lc ,'| C51* Vti*-> R:

2J| riirm-it Pnjn:t nnrriiwntallnn rjTBPiRannrts [jfRiMnx Rihlirgraphy Stfflrti ^ =nnfcs

i
298024 ifiRnnnn TOI FRANCK n
298898 168000010! PRANGEND
299617 1680000 TOLERANCE_D
300447 1680000 TOI.FRANCE D
301137 1680000 TOLERANCE D
3Ü1825 1RKDIKK) KOI.LBACK ü
302430 1680000 RECQ_D ;
302919 1680000 LE_a
303505 1680000 KBCQja

feLUi

304106 1680000

304789

305492

306256

306861

3076S0

308359

308961

309766

310665

311326

312023

312567

SNDCLD
ROLLBACK_D
SNDO D:::-;.-;:j

ROI I.BACK D

■■SC£ß£i-LL. '
ROLLBACK D

SNDQ_D
REGQ.D
RECQ_D
RECO'D \ ■■■'■■;.:..:

120000

120000

120000

120000

1ZU0ÜÜ

120000

120000

120000

120000

120000

120000

120000 RE£OJ2l

\ äjp ea s

Figure 4.8. Active Node AN-1 Out-of-Tolerance Rollback Occurs.

A more complete view can be seen in the three-dimensional graph of Figure 4.14. The
predicted values are shown as a function of wallclock time and LVT. This data was collected by
SNMP polling an active execution environment that was enhanced with AVNMP. The valleys
between the peaks are caused by the polling delay. A diagonal line on the LVT/Wallclock plane
from the front right corner to the back left corner separates LVT in the past from LVT in the
future; future LVT is towards the back of the graph, past LVT is in the front of the graph.
Starting from the front, right hand corner, examine slices of fixed wallclock time over LVT; this
shows both the past values and the predicted value for that fixed wallclock time.

41

u Netscaoe: AN- 1 3Ü54ä2 KÜUHÄtK Ü

File Et« yie*v ■■33 Coraraimcaicr Help

Fun.ya.fJ HdluaU StdTLll
; Lai "■■".'■■■.:/ci

SULLBT.y ss
'! «JpT BjukKaifcs A LuucikJi ►l _e :/aojT.e/ju;hsf/proiecca/an/Laq/lc / © Wt al-> R itd.al

if " j Curmi' Pnj*r t nnrtjmmtatinn £j TPT.t Rjnnrts rj Rihtftx* Ritilirgraphy s*nrr.h £j =hnks ,3.J
Sending «wli message:
Anti Message*** PacketID-> 306
Source: AN-1
Receive Time: 120000
Destination: AN-2
Said Time: G0000
Payload:
Src: AH-1
Ust null
Vat 2000.0

'■■\ ■y-lt. "••£* tiPJ2V.

Figure 4.9. Active Node AN-1 Anti-Message Sent after First Rollback.

As wallclock time progresses, the system corrects for out-of-tolerance predictions. Thus, LVT
values in the past relative to wallclock are corrected. By examining a fixed LVT slice, the
prediction accuracy can be determined from the graph.

This chapter described the architecture and operation of the Active Virtual Network
Management Prediction Algorithm. The performance of the algorithm is impacted by the
accuracy of the predictions generated by the driving processes. The architecture is execution
environment independent; however, the implementation used Magician. The next section
discusses the driving processes in more detail. The remaining chapters of the report include
analysis of the effect upon the system of driving process parameters such as virtual message
generation rate, the ratio of virtual to real messages, and the prediction stepsize.

42

"Netscape: AN-i"aüBäSi KüLLHACK" i)

File Em vie* 33 corniLntcao Help

Eac<. FurwaiJ
3

: =lsluail
4i
Hjne 5tan.li »i|nl Smurt.y

;fg
"sjr'.Bjokirak» A UtUiuii: |lCi.le:/^oi.e/'3iiih3C/pro1ect5/an/ljC[/lc_:j ^pT Wjar» Ritual

f irwit PnjR-.t nnrijTOntalInn JjTnr-.-i Ronnits ffRIMax Rlhirgraphy Saairh ^3 in Is ^ In

Sending anli message:
Anti Message*"* PackeiID-> 307
Source: AN-1
Receive Time: 180000
Dcstinttion: AN-2
Said Time: 120000
Payload:
Src: AH-1
ÜJtnuli
Vat 2000.0

!;i..-p.fe. '"*t:* "^ CT s^' l|

Figure 4.10. Active Node AN-1; Another Anti-Message Sent after First Rollback.

43

Send Queue (OS)

\19,719 \21,744
^0,000 ■feo.ooo
120.000 180,000

^
Ahfy AH\
AN1\ AN1\

2,000 \ 2,000\

Output

Real Time (RT)
Send TinriB (TS)
Receive Time (TR)
Anti-Toggle (A)
Sender(S)
Receiver (R)
Message (M)

Figure 4.11. Active Node AN-1 after Rollback.

44

• I i\ieiscaoe:Html uebugger for AN-/

File Eat Vie* 33 Cornniinlcacr Help

^L v* 3 iS . J*- ial -*
Ew.«. IMfvj.ir I SsluaiJ Hjm» Stdn.ll NilstaHJ 'llnl Seiui.y *^B

•.Jf" BJUfcriartw .t Uttliuii: pfllE :/lone/3u;h3f .'proieccs/M/lco/lCjj C3* VldfiRsfeLHl

5riirmit PnjB-l nnrimmtalinn _jT«-i RnMits ^J Hblsx BWi-Qraphy Sflvnh £J ^ink» Cj I«!
 W==y—-ffiKFTT

AN-tö

63607

63059

65275

65789

65275

67474
67399
69125

69863

70519

71216

71863

72528

73257

74079

75021

7S839

76627

77423

RECO D

QVT.P

GVT_D

RECQ.D

QVTJ)

BECQJi
LE_H

fiVT.D
SECCLD

RECO_D
OVT_D

BECQJtt
RECQ_D
LP D

RECO D

1200UOBuOLi2
120000 RECQJQ

120000 KECQJ2

78286 120000 EEJD.

'AN-1

*** UM-I

VAN-I

m at \f-

Figure 4.12. Active Node AN-2 First Virtual Message Received.

45

4.5e+06

4e+06

3.5e+06

Wed. Oct. 27 17:11:03 EDT 1999 (LVTvt) LVT versus time AN-1

500000

0 500000 1e+06 1.5e+06 2e+06 02.5e+06 3e+06 3.5e+06 4e+06 4.5e+06
Wallclock (milliseconds)

Figure 4.13. Active Node AN-1 LVT versus Wallclock.

(minutes)

8000

6000 Load
(packets/second)

Wallclock
(minutes)

Figure 4.14. Three-Dimensional Graph Illustrating Predicted Load Values as a
Function of Wallclock Time and LVT.

46

AVNMP ALGORITHM DESCRIPTION

One of the major contributions of this research is to recognize and define an entirely new
branch of the Time Warp Family Tree of algorithms. Active Virtual Network Management
Prediction integrates real and virtual time at a fundamental level allowing processes to execute
ahead in time. The Active Virtual Network Management Prediction algorithm must run in real-
time, that is, with hard real-time constraints.

5.1 FUNDAMENTALS OF DISTRIBUTED SIMULATION

Consider the work leading towards the predictive Active Virtual Network Management
Prediction algorithm starting from a classic paper on synchronizing clocks in a distributed
environment (Lamport, 1978). A theorem from this paper limits the amount of parallelism in any
distributed simulation algorithm:

Rule 1: If two events are scheduled for the same process, then the event with the smaller
timestamp must be executed before the one with the larger timestamp.

Rule 2: If an event executed at a process results in the scheduling of another event at a
different process, then the former must be executed before the latter.

A parallel simulation method, known as CMB (Chandy-Misra-Bryant), that predates Time
Warp (Jefferson and Sowizral, 1982) is described in (Chandy and Misra, 1979). CMB is a
conservative algorithm that uses Null Messages to preserve message order and avoid deadlock.
Another method developed by the same author does not require Null Message overhead, but
includes a central controller to maintain consistency and detect and break deadlock. There has
been much research towards finding a faster algorithm, and many algorithms claiming to be
faster have compared themselves against the CMB method.

5.2 BASICS OF OPTIMISTIC SIMULATION

The basic Time Warp Algorithm (Jefferson and Sowizral, 1982) was a major advance in
distributed simulation. Time Warp is an algorithm used to speedup Parallel Discrete Event
Simulation by taking advantage of parallelism among multiple processors. It is an optimistic
method because all messages are assumed to arrive in order and are processed as soon as
possible. If a message arrives out-of-order at a Logical Process, the Logical Process rolls back to

47

a state that was saved prior to the arrival of the out-of-order message. Rollback occurs by
sending copies of all previously generated messages as anti-messages. Anti-messages are exact
copies of the original message, except and anti-bit is set within the field of the message. When
the anti-message and real message meet, both messages are removed. Thus, the rollback cancels
the effects of out-of-order messages. The rollback mechanism is a key part of Active Virtual
Network Management Prediction, and algorithms that improve Time Warp and rollback also
improve Active Virtual Network Management Prediction. There continues to be an explosion of
new ideas and protocols for improving Time Warp. An advantage to using a Time Warp based
algorithm is the ability to leverage future optimizations. There have been many variations and
improvements to this basic algorithm for parallel simulation. A collection of optimizations to
Time Warp is provided in (Fujimoto, 1990). The technical report describing Time Warp
(Jefferson and Sowizral, 1982) does not solve the problem of determining Global Virtual Time;
however, an efficient algorithm for the determination of Global Virtual Time is presented in
(Lazowaska and Lin, 1990). This algorithm does not require message acknowledgments, thus
increasing the performance, yet the algorithm works with unreliable communication links.

An analytical comparison of CMB and Time Warp is the focus of (Lin and Lazowska, 1990).
In this paper the comparison is done for the simplified case of feed-forward and feedback
networks. Conditions are developed for Time Warp to be conservative optimal. Conservative
optimal means that the time to complete a simulation is less than or equal to the critical path
(Berry and Jefferson, 1985) through the event-precedence graph of a simulation.

5.3 ANALYSIS OF OPTIMISTIC SIMULATION

A search for the upper bound of the performance of Time Warp versus synchronous
distributed processing methods is presented in (Felderman and Kleinrock, 1990). Both methods
are analyzed in a feed-forward network with exponential processing times for each task. The
analysis in (Felderman and Kleinrock, 1990) assumes that no Time Warp optimizations are used.
The result is that Time Warp has an expected potential speedup of no more than the natural
logarithm of P over the synchronous method where P is the number of processors.

A Markov Chain analysis model of Time Warp is given in (Gupta et al., 1991). This analysis
uses standard exponential simplifying assumptions to obtain closed form results for performance
measures such as the fraction of processed events that commit, speedup, rollback recovery,
expected length of rollback, probability mass function for the number of uncommitted processed
events, probability distribution function of the local virtual time of a process, and the fraction of
time the processors remain idle. Although the analysis appears to be the most comprehensive
analysis to date, it has many simplifying assumptions such as no communications delay,
unbounded buffers, constant message population, message destinations are uniformly distributed,
and rollback takes no time. Thus, the analysis in (Gupta et al., 1991) is not directly applicable to
the time sensitive nature of Active Virtual Network Management Prediction.

Further proof that Time Warp out-performs is provided in (Lipton and Mizell, 1990). This is
done by showing that there exists a simulation model that out-performs CMB by exactly the
number of processors used, but that no such model in which CMB out-performs Time Warp by a
factor of the number of processors used exists.

48

A detailed comparison of the CMB and Time Warp methods is presented in (Lin, 1990). It is
shown that Time Warp out-performs conservative methods under most conditions.
Improvements to Time Warp are suggested by reducing the overhead of state saving information
and the introduction of a global virtual time calculation. Simulation study results of Time Warp
are presented in(Turnbull, 1992). Various parameters such as communication delay, process
delay, and process topology are varied, and conditions under which Time Warp and CMB
perform best are determined.

The major contribution of this section is to recognize and define an entirely new branch of
the Time Warp Family Tree of algorithms, shown in Figure 5.1, that integrates real and virtual
time at a fundamental level. The Active Virtual Network Management Prediction algorithm must
run in real-time, that is, with hard real-time constraints. Real-time constraints for a time warp
simulation system are discussed in (Ghosh et al., 1993). The focus in (Ghosh et al., 1993) is the
R-Schedulability of events in Time Warp. Each event is assigned a real-time deadline (dEiT) for
its execution in the simulation. /?-Schedulability means that there exists a finite value (R) such
that if each event's execution time is increased by R, the event can still be completed before its
deadline. The first theorem from (Ghosh et al., 1993) is that if there is no constraint on the
number of such false events that may be created between any two successive true events on a
Logical Process, Time Warp cannot guarantee that a set of R-schedulable events can be
processed without violating deadlines for any finite R. There has been a rapidly expanding
family of Time Warp algorithms focused on constraining the number of false events discussed
next.

5.4 CLASSIFICATION OF OPTIMISTIC SIMULATION TECHNIQUES

Another contribution of this section is to classify these algorithms as shown in Figures 5.1,
5.2, 5.3 and Table 5.1. Each new modification to the Time Warp mechanism attempts to improve
performance by reducing the expected number of rollbacks. Partitioning methods attempt to
divide tasks into logical processes such that the inter- communication is minimized. Also
included under partitioning are methods that dynamically move Logical Processes from one
processor to another in order to minimize load and/or inter-Logical Process traffic. Delay
methods attempt to introduce a minimal amount of wait into Logical Processes such that the
increased synchronization and reduced number of rollbacks more than compensates for the added
delay. Many of the delay algorithms use some type of windowing method to bound the
difference between the fastest and slowest processes.

Time
Warp

Partitioned
Figure 3.2

Delayed
Figure 3.3

Semantic Probabilistic Real Time

Semantics-Based Predictive
Time Warp Optimism

[LA94] [NC95]

VNC

Figure 5.1. Time Warp Family of Algorithms

49

Partitioned

Local
Time Warp

[RAT93a, RAT93b]

Clustered
Time Warp

[AT95] [GT93] [BT94]

Figure 5.2. Partitioned Algorithms

Delayed

WOLF
[MWMS7, SS90]

Bounded
Lag

[LubS9]

Fixed
Window

Breathing Moving
Time Time Windows

Buckets [MWMS7]
[Ste93]

Adaptive
Window

Breathing
Time Warp

[Ste93]

Adaptive Near
Time Warp Perfect State

[BH90] Information
[SP95b]

Figure 5.3 Delaying Algorithms

50

Table 5.1 Time Warp Family of Algorithms.

Class Sub Class

Probabilistic

Semantic

Partitioned

Delayed

Bounded

Sphere

Description Example

Predict msg arrival time.

Contents used to reduce rollback.

Inter-LP comm minimized.

Predictive Optimism
((Leong and Agrawal, 1994))
Semantics Based Time Warp
((Leong and Agrawal, 1994))

Dynamic LPs change mode dynamically.
Load Balanced LPs migrate across hosts.

Static LPs cannot change
mode while executing.

Delays reduce rollback.
Windows reduce rollback.

Adaptive Window Windows adapt to reduce rollback.

Fixed Window Window docs not adapt.

((Glazer and Tropper, 1993), and
(Boukerche and Tropper, 1994))
Clustered Time Warp
((Avril and Tropper, 1995))
Local Time Warp
((Rajaei et al., 1993a, Rajaei et al., 1993b))

Breathing Time Warp
((Steinman, 1993))
Breathing Time Buckets
((Steinman, 1993))
Moving Time Windows
((Madisetti et al., 1987))

Based on earliest time
inter-LP effects occur.

Bounded Lag
((Lubachevsky, 1989))
WOLF

Non-Windowed Non-Window method to
reduce rollback.

((Madisetti et al., 1987, Sokol and Stucky, 1990))
Adaptive Time Warp
((Ball and Hoyt, 1990))
Near Perfect State Information
((Srinivisan and Paul F. Reynolds, 1995b))

ail)-
nun

?e S l(i,B)AJ*i
.{d(hihrmn{T(j),d(ij)+T(i)}} (5.1)

The bounded sphere class of delay mechanisms attempts to calculate the maximum number
of nodes that may need to be rolled back because they have processed messages out of order. For
example, si(i, B) in (Lubachevsky et al., 1989) is the set of nodes affected by incoming
messages from node i in time B, while Sl(i, B) is the set of nodes affected by outgoing messages
from node i in time B. The downward pointing arrow in Si(i, B) indicates incoming messages,
while the upward pointing arrow in ST(i, B) indicates outgoing messages.

Another approach to reducing rollback is to use all available semantic information within
messages. For example, commutative sets of messages are messages that may be processed out-
of-order yet they produce the same result. Finally, probabilistic methods attempt to predict
certain characteristics of the optimistic simulation, usually based on its immediate past history,
and take action to reduce rollback based on the predicted characteristic. It is insightful to review
a few of these algorithms because they not only trace the development of Time Warp based
algorithms but also because they illustrate the "state of the art" in preventing rollback, attempts
at improving performance by constraining lookahead, partitioning of Logical Processes into
sequential and parallel environments, and the use of semantic information. All of these
techniques and more may be applied in the Active Virtual Network Management Prediction
algorithm.

The Bounded Lag algorithm (Lubachevsky, 1989) for constraining rollback explicitly
calculates, for each Logical Process, the earliest time that an event from another Logical Process
may affect the current Logical Process's future. This calculation is done by first determining the

51

(Sl(i, B)), which is the set of nodes that a message may reach in time B. This depends on the
minimum propagation delay of a message in simulation time from node i to node j, which is
d(i,j). Once Si(i, B) is known, the earliest time that node / can be affected, oc(/), is shown in
Equation 5.1, where T(i) is the minimum message receive time in node /'s message receive
queue. After processing all messages up to time cc(z'), all Logical Processes must synchronize.

The Bounded Lag algorithm is conservative because it synchronizes Logical Processes so
that no message arrives out of order. The problem is that a minimum d{i,j) must be known and
specified before the simulation begins. A large d(i,j) can negate any potential parallelism,
because a large d{i,j) implies a large a(i), which implies a longer time period between
synchronizations. A filtered rollback extension to Bounded Lag is described in (Lubachevsky et
al., 1989). Filtered Rollback allows d(i,j) to be made arbitrarily small, which may possibly
generate out of order messages. Thus the basic rollback mechanism described in (Jefferson and
Sowizral, 1982) is required.

A thorough understanding of rollbacks and their containment is essential for Active Virtual
Network Management Prediction. In (Lubachevsky et al., 1989), rollback cascades are analyzed
under the assumption that the Filtered Rollback mechanism is used. Rollback activity is viewed
as a tree; a single rollback may cause one or more rollbacks that branch out indefinitely. The
analysis is based on a "survival number" of rollback tree branches. The survival number is the
difference between the minimum propagation delay d(j,i) and the delay in simulated time for an
event at node i to affect the history at node, j t(i,j). Each generation of a rollback caused by an
immediately preceding node's rollback adds a positive or negative survival number. These
rollbacks can be thought of as a tree whose leaves are rollbacks that have "died out." It is shown
that it is possible to calculate upper bounds, namely, infinite or finite number of nodes in the
rollback tree.

A probabilistic method is described in (Noble and Chamberlain, 1995). The concept in
(Noble and Chamberlain, 1995) is that optimistic simulation mechanisms are making implicit
predictions as to when the next message will arrive. A purely optimistic system assumes that if
no message has arrived, then no message will arrive and computation continues. However, the
immediate history of the simulation can be used to attempt to predict when the next message will
arrive. This information can be used either for partitioning the location of the Logical Processes
on processors or for delaying computation when a message is expected to arrive.

In (McAffer, 1990), a foundation is laid for unifying conservative and optimistic distributed
simulation. Risk and aggressiveness are parameters that are explicitly set by the simulation user.
Aggressiveness is the parameter controlling the amount of non-causality allowed in order to gain
parallelism, and risk is the passing of such results through the simulation system. Both
aggressiveness and risk are controlled via a windowing mechanism similar to the sliding
lookahead window of the Active Virtual Network Management Prediction algorithm.

A unified framework for conservative and optimistic simulation called ADAPT is described
in (Jha and Bagrodia, 1994). ADAPT allows the execution of a "sub-model" to dynamically
change from a conservative to an optimistic simulation approach. This is accomplished by
uniting conservative and optimistic methods with the same Global Control Mechanism. The
mechanism in (Jha and Bagrodia, 1994) has introduced a useful degree of flexibility and
described the mechanics for dynamically changing simulation approaches; (Jha and Bagrodia,
1994) does not quantify or discuss the optimal parameter settings for each approach.

52

A hierarchical method of partitioning Logical Processes is described in (Rajaei et al., 19993a,
Rajaei et al, 19993b). The salient feature of this algorithm is to partition Logical Processes into
clusters. The Logical Processes operate as in Time Warp. The individual clusters interact with
each other in a manner similar to Logical Processes.

The CTW is described in (Avril and Tropper, 1995). The CTW mechanism was developed
concurrently but independently of Active Virtual Network Management Prediction. This
approach uses Time Warp between clusters of Logical Processes residing on different processors
and a sequential algorithm within clusters. This is in some ways similar to the SLogical Process
described later in Active Virtual Network Management Prediction. Since the partitioning of the
simulation system into clusters is a salient feature of this algorithm, CTW has been categorized
as a partitioned algorithm in Figure 5.2. One of the contributions of (Avril and Tropper, 1995) in
CTW is an attempt to efficiently control a cluster of Logical Processes on a processor by means
of the CE. The CE allows the Logical Processes to behave as individual Logical Processes as in
the basic time warp algorithm or as a single collective Logical Process. The algorithm is an
optimization method for the Active Virtual Network Management Prediction SLogical
Processes.

Semantics Based Time Warp is described in (Leong and Agrawal, 1994). In this algorithm,
the Logical Processes are viewed as abstract data type specifications. Messages sent to a Logical
Process are viewed as function call arguments and messages received from Logical Processes are
viewed as function return values. This allows data type properties such as commutativity to be
used to reduce rollback. For example, if commutative messages arrive out-of-order, there is no
need for a rollback since the results will be the same.

Another means of reducing rollback, in this case by decreasing the aggressiveness of Time
Warp, is given in (Ball and Hoyt, 1990). This scheme involves voluntarily suspending a
processor whose rollback rate is too frequent because it is out-pacing its neighbors. Active
Virtual Network Management Prediction uses a fixed sliding window to control the rate of
forward emulation progress; however, a mechanism based on those just mentioned could be
investigated.

The NPSI Adaptive Synchronization Algorithms for Parallel Discrete Event Synchronization
are discussed in (Srinivisian and Paul F. Reynolds, 1995a) and (Srinivisian and Paul F. Reynolds,
1995b). The adaptive algorithms use feedback from the simulation itself in order to adapt. Some
of the deeper implications of these types of systems are discussed in Appendix 8. The NPSI
system requires an overlay system to return feedback information to the Logical Processes. The
NPSI Adaptive Synchronization Algorithm examines the system state (or an approximation of
the state), calculates an error potential for future error, and then translates the error potential into
a value that controls the amount of optimism.

Breathing Time Buckets described in (Steinman, 1992) is one of the simplest fixed window
techniques. If there exists a minimum time interval between each event and the earliest event
generated by that event (7), then the system runs in time cycles of duration T. All Logical
Processes synchronize after each cycle. The problem with this approach is that T must exist and
must be known ahead of time. Also, T should be large enough to allow a reasonable amount of
parallelism, but not so large as to lose fidelity of the system results.

Breathing Time Warp (Steinman, 1993) attempts to overcome the problems with Breathing
Time Buckets and Time Warp by combining the two mechanisms. The simulation mechanism
operates in cycles that alternate between a Time Warp phase and a Breathing Time Buckets

53

phase. The reasoning for this mechanism is that messages close to GVT are less likely to cause a
rollback, while messages with time-stamps far from GVT are more likely to cause rollback.
Breathing Time Warp also introduces the event horizon, that is the earliest time of the next new
event generated in the current cycle. A user-controlled parameter controls the number of
messages that are allowed to be processed beyond GVT. Once this number of messages is
generated in the Time Warp phase, the system switches to the Breathing Time Buckets phase.
This phase continues to process messages, but does not send any new messages. Once the event
horizon is crossed, processing switches back to the Time Warp phase. One can picture the
system taking in a breath during the Time Warp phase and exhaling during the Breathing Time
Buckets phase.

An attempt to reduce roll-backs is presented in an algorithm called WOLF (Mandisetti et al.,
1987, Sokol and Stucky, 1990). This method attempts to maintain a sphere of influence around
each rollback in order to limit its effects.

The Moving Time Window (Sokol et al., 1988, Sokol and Stucky, 1990) simulation
algorithm is an interesting alternative to Time Warp. It controls the amount of aggressiveness in
the system by means of a moving time window MTW. The trade-off in having no roll-backs in
this algorithm is loss of fidelity in the simulation results. This could be considered as another
method for implementing the Active Virtual Network Management Prediction algorithm.

An adaptive simulation application of Time Warp is presented in (Tinker and Agra, 1990).
The idea presented in this paper is to use Time Warp to change the input parameters of a running
simulation without having to restart the entire simulation. Also, it is suggested that events
external to the simulation can be injected even after that event has been simulated.

Hybrid simulation and real system component models are discussed in (Bagrodia and Shen,
1991). The focus in (Bagrodia and Shen, 1991) is on PIPS Components of a performance
specification for a distributed system that are implemented while the remainder of the system is
simulated. More components are implemented and tested with the simulated system in an
iterative manner until the entire distributed system is implemented. The PIPS system described in
(Bagrodia and Shen, 1991) discusses using MAY or Maisie as a tool to accomplish the task, but
does not explicitly discuss Time Warp.

5.5 REAL-TIME CONSTRAINTS IN OPTIMISTIC SIMULATION

The work in (Ghosh et al., 1993) provides some results relevant to Active Virtual Network
Management Prediction. It is theorized that if a set of events is /?-schedulable in a conservative
simulation, and R > p+ c t + a where p is the time to restore an state, c is the number of
Processes, t is the time the simulation has been running, and a is the real time required to save an
state, then the set of events can run to completion without missing any deadline by an NFT Time
Warp strategy with lazy cancellation. NFT Time Warp assumes that if an incorrect computation
produces an incorrect event (EjT), then it must be the case that the correct computation also
produces an event (EiT) with the same timestamp1. This result shows that conditions exist in a
Time Warp algorithm that guarantee events are able to meet a given deadline. This is
encouraging for the Active Virtual Network Management Prediction algorithm since clearly
events must be completed before real-time reaches the predicted time of the event for the cached

54

results to be useful in Active Virtual Network Management Prediction. Finally, this author has
not been the only one to consider the use of Time Warp to speed up a real-time process. In
Tennenhouse and Bose, 1995), the idea of temporal decoupling is applied to a signal processing
environment. Differences in granularity of the rate of execution are utilized to cache results
before they are needed and to allocate resources more effectively.

This section has shown the results of research into improving Time Warp, especially in
reducing rollback, as well as the limited results in applying Time Warp to real time systems.
Improvements to Time Warp and the application to real time systems are both directly applicable
to Active Virtual Network Management Prediction. Now consider the Active Virtual Network
Management Prediction Algorithm in more detail.

5.6 PSEUDOCODE SPECIFICATION FOR AVNMP

The Active Virtual Network Management Prediction algorithm requires both Driving
Processes and Logical Processes. Driving Processes predict events and inject virtual messages
into the system. Logical Processes react to both real and virtual messages. The Active Virtual
Network Management Prediction Algorithm for a driving process is shown in Figure 5.4. The
operation of the driving process and the logical process repeat indefinitely. If the Driving Process
has not exceeded its lookahead time, a new value A time units into the future is computed by the
function C(t) and the result is assigned to the message (M) and sent. The receive time, which is
the time at which this message value is to be valid, is assigned to (M).

repeat
if GVT <t + A

then /* not yet reached lookahead */
M.val •«- C{LVT + A) /* compute next message

value */
M.rt «- LVT + A /* set packet receive time */
Send(M)

End pseudo-code.

Figure 5.4. AVNMP Driving Process Algorithm.

The Active Virtual Network Management Prediction Algorithm for a Logical Process is
specified in Figure 5.5. Note that inf is infimum. The next message from the Receive Queue is
checked to determine whether the message is real. If the message is real, the next line in the
pseudo-code retrieves the state that was saved closest to the receive time of the message and
checks whether the values of the saved state are within tolerance. If the tolerance is exceeded, the
process rolls back. Also, if the message is received in the past relative to this process's Local
Virtual Time (LVT), the process rolls back as shown. The pre-computed and cached value in the
State Queue is committed. Committing a value is an irreversible action because it cannot be
rolled back once committed. If the process's Local Virtual Time has not exceeded its time as
determined, then the virtual message is processed. The function C,{M, LVT) represents the
computation of the new state. The function C{M, LVT) returns the state value for this Logical
Process and updates the LVT to the time at which that value is valid. The function C,(M, LVT)

55

represents the computation of a new message value. The appendix to this chapter takes another
look at the algorithm and begins to tie the algorithm to the code provided on the CD included
with this report.

LVTi-0
repeat

M ■(— inf M.tr 6 QR /* retreive message with lowest receive
time */

CS{t).val <— Ci(M,t)/* compute based on new message and
update current state */

if (M.rt < t) and (\SQ(t).val - 0| > CS(t).val)
then Rollback() /* rollback if real message and

out-of-tolerance */
if M.rt < LVT then Rollback()/* rollback if virtual message

and out-of-order */
if M.rt < t then Commit(SQ : SQ.t ä M.rt)
if LVT + A < GVT then /* not looking far enough ahead

yet*/
SQ.val •(- CX(M,LVT)/* update the state queue with

the predicted state */
SQ.t <— LVT/* record the time of the predicted event

V
M.val i— C2(M,LVT) /* generate any new messages

based on previous input message */
M.rt <— LVT /* set message receive time */
QS 4- M /* save copy in send queue */
Send(M)

End pseudo-code.

Figure 5.5. AVNMP Logical Process Algorithm.

56

APPENDIX: AVNMP IMPLEMENTATION

This section discusses enhancing an existing Physical Process (PP)with AVNMP. The web-
based tutorial in the CD included with this report provides a step-by-step explanation of how to
enhance an application with AVNMP. This appendix provides a more detailed look at the
internals of the AVNMP Driving and Logical Processes required in order to perform the
enhancement. Notation for Communicating Sequential Processes (CSP) (Hoare, 1981) will serve
as an intermediate description before looking at the details of the Java code. In CSP "X?Y"
indicates process X will wait until a valid message is received into Y, and "X!Y" indicates X
sends message Y. A guard statement is represented by "X-»Y," which indicates that condition X
must be satisfied in order for Y to be executed. Concurrent operation is indicated by "X | | Y,"
which means that X operates in parallel with Y. A "*" preceding a statement indicates that the
statement is repeated indefinitely. An alternative command, represented by "X | | Y," indicates
that either X or Y may be executed assuming any guards (conditions) that they may have are
satisfied. If X and Y can both be executed, then only one is randomly chosen to execute. A
familiar example used to illustrate CSP is shown in Algorithm 5.A.I. This is the bounded buffer
problem in which a finite size buffer requests more items from a consumer only when the buffer
will not run out of capacity.

Assume a working PP abstracted in Algorithm 5.A.2 where S and D represent the source and
destination of real and virtual messages. Algorithm 5.A.3 shows the PP converted to a AVNMP
LP operating with a monotonically increasing LVT. Note that the actual AVNMP Class function
names are used; however, all the function arguments are not shown in order to simplify the
explanation. Each function is described in more detail later. The input messages are queued in
the Receive Queue as shown in Algorithm 5.A.3 by recvm(). In non-rollback operation the
function getnextvm() returns the next valid message from the Receive Queue to be processed by
the PP. When the PP has a message to be sent, the message is place in the State Queue by
sendvmC). While a message is flowing through the process, the process saves its state
periodically. Normal operation of the AVNMP as just described may be interrupted by a
rollback. If recvm() returns a non-zero value, then either an out-of-order or out-of-tolerance
message has been received. In order to perform the rollback, getstate() is called to return the
proper~state to which the process must rollback. It is the application's responsibility to ensure
that the data returned from getstate() properly restores the process state. Anti-messages are sent
by repeatedly calling rbq() until rbq() returns a null value. With each call of rbq(), an anti-
message is returned which is sent to the destination of the original message.

5.A.I. AVNMP Class Implementation

Figure 5.A.4 lists a selection of the main classes and their primary purpose in the AVNMP
system. A complete list of the classes and their descriptions can be found on the CD in
README.html. The classes are the primary classes for understanding the operation of the
AVNMP system.

57

X::
buff er: (0..9) portion;
in,out:integer; in := 0; out := 0;
*[in < out + 10; producer?buffer(in mod 10) —>

in :- in + 1;
I | out < in; consumer?more() —»
consumer!buffer(out mod 10); out := out + 1;

Figure 5.A.I. A CSP Example

PP::
*[S?input;
output := process(input);
D! output]

Figure 5.A.2. A Physical Process

PP::
*[S?input;
[recvm(input) !=0 —> getstate();
*[rbq()!=NULL -4 S!AvnmpDriverRb;D!rbq()] | |
[recvm(input)==0 —»
saves tate();
input := getnextvm();
output := process(input);
sendvm(output);
D! output]

Figure 5.A.3. The Logical Process

'avnmp.java.lp.AvnmpRecQueue Receive a message, deter-
mine whether virtual or real, rollback

avnmp.java.lp.AvnmpSndQueue Send a virtual message,
save a copy

avnmp.java.lp.AvnmpQueue All queue related functions

avnmp.java.lp.AvmnpLP Roll back to given time

avnmp.java.lp.AvnmpStateQueue Save previous state

avnmp.java.lp.AvnmpTime Local virtual time maintenance
functions

avnmp.java.lp.AvnmpPacket The virtual message

avnmp.java.dp.Driver The driving process

avnmp.java.pp.PP The physical process

avnmp.java.pp.PayLoad The real message

Figure 5.A.4. AVNMP Class Files

58

PredictO —> output —> getvm()

Figure 5.A.5. The Driving Process

input —> process —» output

Figure 5.A.6. The Logical Process

5.A.2 AVNMP Logical Process Implementation

This class implements the AVNMP logical process. The general idea is to have a working
process modified in Figure 5.A.6. Figure 5.A.7 shows the "normal" operation, while Figure
5.A.8 shows the operation of the process when a rollback occurs.

input —> getvm(); getnextQ —*■

C process —► sendvm() -> output

I savestate()

Figure 5.A.7. AVNMP Normal Operation

if(getvm() * 0)getstate() -> process()-> rbq -» output

Figure 5.A.8. AVNMP Rollback Operation

59

Notes

'This simplification makes the analysis in (Ghosh et al., 1993) tractable. This assumption also
greatly simplifies the analysis of Active Virtual Network Management Prediction. The Active
Virtual Network Management Prediction algorithm is simplified because the state verification
component of Active Virtual Network Management Prediction requires that saved states be
compared with the real-time state of the process. This is done easily under the assumption that
the T (timestamp) values of the two events EiTv and EiTr are the same.

60

ALGORITHM ANALYSIS

The purpose of this section is to analyze the performance of the Active Virtual Network
Management Prediction Algorithm. As discussed in detail in previous chapters, current network
management is centralized, as shown in Figure 6.1. On the other hand, the Active Virtual
Network Management Prediction Algorithm distributes management. Figure 6.2 shows an active
network testbed consisting of three active nodes. The active nodes are labeled AN-1, AN-4, and
AN-5, and the links are labeled L-l, L-2, L-3, and L-4. One of the goals of this section is to
investigate the benefits of the new active network based distributed management model. The
characteristics of the Active Virtual Network Management Prediction Algorithm analyzed in this
section are speedup, lookahead, accuracy, and overhead. Speedup is the ratio of the time required
to perform an operation without the Active Virtual Network Management Prediction Algorithm
to the time required with the Active Virtual Network Management Prediction Algorithm.
Lookahead is the distance into the future that the system can predict events. Accuracy is related
to the rate of convergence between the predicted and actual values. Bandwidth overhead is the
ratio of the amount of additional bandwidth required by the Active Virtual Network Management
Prediction Algorithm system to the amount of bandwidth required without the Active Virtual
Network Management Prediction Algorithm system, and processing overhead is the reduction in
network capacity due to active packet execution.

Because the Logical Processes of the Active Virtual Network Management Prediction
Algorithm system are asynchronous, they can take maximum advantage of parallelism. However,
messages among processes may arrive at a destination process out-of-order as illustrated in
Figure 3.2. As shown in Figure 6.2, a virtual network representing the actual network can be
viewed as overlaying the actual network for analytical purposes.

Management
Station

Monitor &
Control

.«..■•••"""

 o
^ijijj:::::;::::;::::"::::""":^

Managed Entities

Figure 6.1. Centralized Network Management Model.

61

Virtual System

Real System

Figure 6.2. AVNMP as a Virtual Overlay for Network Management.

Virtual messages may not arrive at a logical process in the order of Receive Time for several
reasons. The first reason is that in an optimistic parallel model, virtual messages are executed as
soon as they arrive at a logical process. Thus, in an optimistic simulation of a complex network,
virtual messages do not block or delay to enforce causality. This leads to a possibility of
messages arriving out-of-order even if the virtual message links have no transmission delay.
Petri-Net theory is used to analyze this type of out-of-order message arrival. Petri-Nets are
commonly used for synchronization analysis. In Petri-Nets, "places," usually shown as circles,
represent entities such as producers, consumers, or buffers, and "transitions," shown as squares,
allow "tokens," shown as dots, to move from one place to another. In this analysis, tokens
represent the Active Virtual Network Management Prediction Algorithm messages and Petri-Net
places represent the Active Virtual Network Management Prediction Algorithm Logical
Processes. Characteristics of Petri-Nets are used to determine the likelihood of out-of-order
messages.

Another source of out-of-order virtual message arrival at a logical process is due to
congestion or queuing delay. The actual messages in Figure 6.2 can cause the virtual messages
along a particular link to arrive later than virtual messages arriving along another link to the
same logical process. However, the Active Virtual Network Management Prediction Algorithm
can predict that the congestion and thus the late virtual message arrival are likely to occur. The
accuracy of this prediction depends in part upon the acceptable tolerance setting of the
prediction. The relationship of the tolerance to prediction accuracy and late virtual message
arrival likelihood are discussed later in this chapter. If a Logical Process predicts congestion
along an input link, then the Logical Process delays itself until some virtual message arrives
along that link, thus avoiding a possible rollback. The likelihood of the occurrence of out-of-
order messages and out-of-tolerance messages is required by an equation that is developed in this
chapter to describe the speedup of the Active Virtual Network Management Prediction
Algorithm. After analyzing the speedup and lookahead, the prediction accuracy and overhead are
analyzed. This chapter considers enhancements and optimizations such as implementing multiple
future events, eliminating the calculation, and elimination of real messages when they are not
required.

Performance analysis of the Active Virtual Network Management Prediction algorithm must
take into account accuracy as well as distance into the future that predictions are made. An

62

inaccurate prediction can result in committed resources that are never used and thus wasted, or in
not committing enough resources when needed, thus causing a delay. Unused resource allocation
must be minimized. Active Virtual Network Management Prediction does not require permanent
over-allocation of resources; however, the Active Virtual Network Management Prediction
algorithm may make a false prediction that temporarily establishes resources that may never be
used An Active Virtual Network Management Prediction system whose tolerances are reduced
in order to produce more accurate results will have fewer unused allocated resources; however,
the tradeoff is a reduction in speedup.

UAVNMp=V^s-oc^w-ß^b (6>1)

Equation (6 1) quantifies the advantage of using Active Virtual Network Management
Prediction where r\ is the expected speedup using Active Virtual Network Management
Prediction over a non-Active Virtual Network Management Prediction system, #s is the marginal
utility function of the configuration speed, and a is the expected quantity of wasted resources
other than overhead, and Ow is the marginal utility function of the allocated but unused resource
An example of a resource that may be temporarily wasted due to prediction error is a Virtual
Circuit in a mobile wireless network that may be established temporarily and never used. The
expected overhead is represented by ß and 3>b is the marginal utility function of bandwidth and

processing.

The marginal utility functions <&„ <Dw and <Db are subjective functions that describe the value
of a particular service to the user. The functions <E>„ Ow and Ob may be determined by monetary
considerations and user perceptions. The following sections develop propositions that describe
the behavior of the Active Virtual Network Management Prediction algorithm and from these
propositions equations for r\, a and ß are defined.

6.1 PETRI-NET ANALYSIS FOR THE AVNMP ALGORITHM

In this section the probability of message arrival at a Logical Process is determined, the
expected proportion of messages (E[X]) and the probability of rollback due to messages (P J is
analyzed and a new and simpler approach to analyzing Time-Warp based algorithms m general
and the Active Virtual Network Management Prediction Algorithm in particular is developed.
The contribution is unique because most current optimistic analysis has been explicitly time-
based yielding limited results except for very specific cases. The approach is topological; timing
is implicit rather than explicit. A C/E is used in this analysis because it is the simplest form of a
Petri-Net that is ideal for studying the Active Virtual Network Management Prediction
Algorithm synchronization behavior.

A C/E network consists of condition and transition elements that contain tokens. Tokens
reside in condition elements. When all condition elements leading to a transition element contain
a token several changes take place in the network. First, the tokens are removed from the
conditions that triggered the event, the event occurs, and finally tokens are placed in all condition
outputs from the transition that was triggered. Multiple tokens in a condition and the uniqueness
of the tokens is irrelevant in a C/E Net. In this analysis, tokens represent virtual messages,

63

conditions represent processes, and transitions represent interconnections. The notation from
(Reisig, 1985) is used: 2 = (B,E;F,Q is a C/E Net where B is the set of conditions, E is the set of
transitions, and Fc(BxE)u(ExB) where u is union and x is the cross product of all
conditions and transitions. A marking is the set of conditions containing tokens at any given time
during C/E operation and C is the set of all possible sets of markings of 2. The input conditions
to a transition are written as "pre-e" and the output conditions are written as "post-e." Let c c
C, then a transition e e E is triggered when pre-e c (c c B) and post-e nc = 0. If c is the
current set of enabled conditions and after the next transition (e) the new set of enabled
conditions is c, then this is represented more compactly as c[e)c'. C/E networks provide insight
into liveness, isomorphism, reachability, a method for determining synchronous behavior, and
behavior based on the topology of the Active Virtual Network Management Prediction
Algorithm Logical Process communication. Every Finite State Machine has an equivalent C/E
Net (Peterson, 1981, p. 42).

Some common terminology and concepts are defined next that are needed for a topological
analysis of the Active Virtual Network Management Prediction Algorithm. These terms and
concepts are introduced in a brief manner and build upon one another. Their relationship with the
Active Virtual Network Management Prediction Algorithm will soon be made clear. The
following notation is used: "—" means "logical not," "3" means "there exists," VVV" means "for
each," "A" means "logical and,", "v" means "logical or," "e" means that an element is a
member of a set, "=" means "defined as," and "—>" defines a mapping or function. Also, a < b
indicates an ordering between two elements, a and b, such that a precedes b in some relation.
"=»" means "logical implication" and "<-»" means "logical equivalence."

A region of a particular similarity relation (•) ofScA means that \/a,b e B : a b and \/a e
A :a g B => 3b e B : —i (a -b). This means that the relation is "full" on B and B is a maximal
subset on which the relation is full. In other words, a graph of the relation (•) would show B as
the largest fully connected subset of nodes in A.

Let "li" represent a such that a li b <-» (a -< b) v (b -< a) v(a = b). Let "co" represent a
concurrent ordering acobe-i (a lib) v(a = b). Figure 6.3 illustrates a region of cothat
contains {a, c) and of li that contains {a, b, d] where {a, b, c, d) represents Logical Processes
and the relation is "sends a message to." Trivially, if every process in the Active Virtual Network
Management Prediction Algorithm system is a region of li then regardless of how many driving
processes there are, no synchronization is necessary since there exist no processes. If no
synchronization is needed, then virtual messages cannot arrive out-of-order; thus no rollback will
occur.

64

Figure 6.3. Demonstration of li and co.

Let D be the set of driving processes and R be the set of the remaining processes in the
Active Virtual Network Management Prediction Algorithm system. Then D < /? <-> We D Vr
e R : (d -< r) v(d co r). In order for the virtual messages that originate from D to be used, D <
R where R are the remaining non-driving processes. This is again assumed to be "sends a
message to."

In the remaining definitions, let A, B, and C be arbitrary sets where B cA used for defining
additional operators. Let B ± C = Vb e B Vc e C: fc -< c vb co c. Let B' s { a e A | {a} x 5 }

and S+ s { a e A | 5 ^ {a} } where | means "such that." Also, let [B] s {& e B | Vö' e 5: (&

co fc') v(fe -< b') } and 5 s { b e 5 | VZ/ e 5: (fe co b') v(b' -< b) }. This is illustrated in Figure
6.4,where all nodes are in the set A and B is the set of nodes that lie within the circle. B~ is the set

{a,b,c,d,f\ and [5] is the set {b}.

Figure 6.4. Illustration of B and [B].

An occurrence network (K) is a network that is related to the operation of a particular
network (S). The occurrence network (K) begins as an empty C/E network; conditions and

65

events are added to K as Z operates. AT represents a particular sample of operation of Z. There can
be multiple events in Z that are capable of firing, but only one event is chosen to fire; thus it is
possible that a particular Z will not always generate the same occurrence net (K) each time it
operates. Note that K has some special properties. The condition elements of K have one and
only one transition, because only one token in Z may fire from a given condition. Also, K is
cycle free because K represents the operation of Z.

A few more definitions are required before the relation described above between K and Z can
be formally defined. This relationship is called a Petri-Net process. Once the Petri-Net process is
defined, a measure for the "out-of-orderness" of messages can be developed based on synchronic
distance. A line is a subset that is a region of H and a cut is a subset that is a region of co. A
slice ("si") is a cut of an occurrence network (K) containing condition elements, and si (K) is the
set of all slices of K. The of co shown in Figure 6.3 illustrates a cut where nodes represent
conditions and the relation defines an event from one condition to another in a C/E Network.

A formal definition of the relation between an occurrence net and a C/E net is given by a
Petri-Net process. A Petri-Net process (p) is defined as a mapping from a network K to a C/E
Network Z, p : K —> Z, such that each slice of K is mapped injectively (one-to-one) into a
marking and (p(pre-r) = pre-p(r)) A(p(post-r) = post-p(r)). Also note that p~l is used to indicate
the inverse mapping of p. Think of K as a particular sample of the operation of a C/E Network. A
C/E Network can generate multiple processes. Another useful characteristic is whether a network
is K-dense. A network is K-dense if and only if every si (K) has a non-empty intersection with
every region of li in K. This means that each intersects every sequential path of operation.

All of the preceding definitions have been leading towards the development of a measure for
the "out-of-orderness" of messages that does not rely on explicit time values or distributions. In
the following explanation, a measure is developed for the synchronization between events.
Consider Z), and D2 that are two slices of K and M is a set of events in a C/E Network. |i(M, Dv

D2) is defined as | M nD\ rD'l \-\M n£>", n£>+, |. Note that \i(M, Dv D2) = - \i(M, D2, Dx).
Thus \i(M, Dv D2) is a number that defines the number of events between two specific slices of a
net.

Let {p:K —» Z) e nz where nz is the set of all finite processes of Z. A term known as
"variance" is defined that describes the number of events across all slices of a net (K). The
variance of Tz is v(p, Tx, T2) = max^"1^), Dv D2) - \i(p'\T2), £>„ D2) \D„D2E si (£)}. Also,
note that v{p, Tv T2) = v(p, T2, T{) where and T,, T2 c rs. This defines a measure of the number of
events across all slices of a net (K).

The synchronic distance (G(T{, T2) = sup{ v(p, Tv T2) \ p e nz }) is the supremum of the
variance in all finite processes. This defines the measure of "out-of-orderness" across all possible
K. By determining the synchronic distance, a measure for the likelihood of rollback in the Active
Virtual Network Management Prediction Algorithm can be defined that is dependent on the
topology and is independent of time. Further details on syn chronic distance and the relation of
synchronic distance to other measures of synchrony can be found in (Voss et al, 1987). A more
intuitive method for calculating the synchronic distance is to insert a virtual condition into the
C/E net. This condition has no meaning or effect on operation. The condition is allowed to hold
multiple tokens and begins with enough tokens so that it can emit a token whenever a condition
connected to its output transition is ready to fire. The virtual condition has inputs from all

66

members of T, and output transitions of all members of T2. The synchronic distance is the
maximum variation in the number of tokens in the virtual condition. The greater the possibility
of rollback, the larger the value of a(7„ T2). A simple example in Figure 6.5 intuitively illustrates
what the synchronic distance means. Using the virtual condition method to calculate the
synchronic distance between {a, b} and {c, d} in the upper C/E Network, the synchronic
distance is found to be two. By adding two more conditions and another transition to the C/E
network, the synchronic distance of the lower C/E Network shown in Figure 6.5 is one. The
larger the value of a(Tv T2), the less synchronized the events in sets 7, and Tr If these events
indicate message transmission, then the less synchronized the events, the greater the likelihood
that the messages based on events Tx and T2 are out-of-order. This allows the likelihood of
message arrival at a Logical Process to be determined based on the inherent synchronization of a
system. However, a completely synchronized system does not gain the full potential provided by
optimistic parallel synchronization.

Figure 6.5. Example of Synchronic Distance.

A P/T Network is similar to a C/E network except that a P/T Net allows multiple tokens in a
place and multiple tokens may be required to cause a transition to fire. Places are defined by the
set S and transitions by the set T. The operation of a network can be described by a matrix. The
rows of the matrix represent places and the columns represent transitions. The last column of the

67

matrix represents the current number of tokens in a place. Each element of the matrix contains
the number of tokens that either leave (negative integer) or enter (positive integer) a place when
the transition fires. When a transition fires, the column corresponding to the transition is added to
the last column of the matrix. The last column of the matrix changes as the number of nodes in
each place change. The matrix representation of a P/T Network is shown in Matrix 6.2, where
LPn e S,cne T and wij is the weight or number of tokens required by link j to fire or the number
of tokens generated by place i. Note that LPn and cn bordering Matrix 6.2 indicate labels for rows
and columns. Note also that there exists a duality between places and transitions such that places
and transitions can be interchanged (Peterson, 1981, p. 13). P/T networks can be extended from
the state representation of C/E networks to examine problems involving quantities of elements in
a system, such as producer/consumer problems. The places in this analysis are analogous to
Logical Processes because they produce and consume both real and virtual messages. Transitions
in this analysis are analogous to connections between Logical Processes, and tokens to messages.
The weight, or number of tokens, is -w.. for outgoing tokens and wtJ for incoming tokens. The
current marking, or expected value of the number of tokens held in each place, is given in
column vector mN . A transition to the next state is determined by m^+1 = ihN +ct where c,- is

the column vector of the transition that fired and N is the current matrix index.

q c2 C3 ■•• tripf

LP '

LP2 MN = l
N LP3

fw\,\ w\,2 wl,3 •■■ "1A

w2 1 w2 2 w2 3 '"' n2

w3,l w3,2 w3,3 •■• "3

V • : : : : .

(6.2)

A global synchronic distance value is shown in Equation 6.3 where T consists of the set of all
transitions. The global synchronic distance is used to define a normalized measure. The global
measure is the maximum in a P/T network and <JB(/p/2) e [0,1] is a normalized value shown in
Equation 6.4 where {In} is a set of all incoming transitions to a particular place. A probability of
being within tolerance is defined in vector p shown in Matrix 6.5. Each LP.t along the side of

Matrix 6.5 indicates a LP and the 1 - Pot along the top of Matrix 6.5 indicates p. values that are
the individual probabilities that the tolerance is not exceeded. The probability of out-of-tolerance
rollback is discussed in more detail in Section 4.1. Let (LPt, c) be the transition from LPt across
connection cr After each transition of MN from (LP„ c.), the next value of nt that is the element in

the f row of the last column of MN is crn(/p/2) /?."■'.

GSV= ^ {a(fl,f2)} (6.3)

<rn(lltI2)=l.0-^3l (6.4)

68

I-Pot

rPl\
LPo

""LP;

Pi

Pi

(6.5)

It is possible for the synchronic distance to be infinite. One way to avoid an infinite
synchronic distance is to use weighted synchronic distances. A brief overview of weighted
synchronic distances is given in this section. (Andre et al., 1979) introduces capacity Petri-Nets
(CPN). Capacity Petri-Nets have place values that hold a multiple number of tokens but with a
maximum capacity. A transition cannot fire if it results in a place exceeding its pre-specified
capacity. The capacity has an effect upon the synchronic distance. A place between two sets of
transitions enforces a synchronic distance equal to the capacity of that place. This is directly
apparent because an intuitive method for determining synchronic distance is to add a place with
inputs from one set of transitions and outputs to the other set. The synchronic distance is the
maximum number of tokens that can appear in the place given all possible firing sequences. In
(Goltz and Reisig, 1982) weighted synchronic distances are introduced. Synchronic distance as
originally defined can in many instances become infinite even though it is apparent a regular
structure exists in the Petri-Net. In (Goltz, 1987) the concept of synchronic distance is introduced
along with weighted synchronic distance. (Silva and Colom, 1988) builds on the relationship
between synchronic invariants and linear programming. In (Silva and Murata, 1992) measures
related to synchronic distances are discussed, namely bounded-fairness. Bounded-fair relations
are concerned with the number of times a transition fires before another transition can fire.
Marked graphs form a subset of Petri-Nets. The synchronic distance matrix of a marked graph
holds the synchronic distances between every vertex in the marked graph. In (Mikami et al.,
1993, Tamura and Abe, 1996) necessary and sufficient conditions are given for a matrix to
represent a marked graph.

As p"> approaches zero, the likelihood of an out-of-tolerance induced rollback increases. As

(*„(/,,/,) p.' becomes very small, the likelihood of a rollback increases either due to a violation of
causality or an out-of-tolerance state value. Synchronic distance is a metric and furthermore the
CTn(/,,/0 value is treated as a probability because it has the axiomatic properties of a probability.
The axiomatic properties are that au(ItJ^ assigns a number greater than or equal to zero to each
synchronic value, oB(/„/2) has the value of one when messages are always in order, and GU(A) +
an(B) = CTn(A \JB), where A and B are mutually exclusive sets of transitions.

A brief example is shown in Figure 6.6. The initial state shown in Figure 6.6 is represented in
Matrix 6.6. The Global Synchronic Value of this network is four. The tolerance vector for this
example is shown in Vector 6.7. Consider transition a shown in Figure 6.6; it is enabled since
tokens are available in all of its inputs. The element in the p column vector shown in Vector 6.7
is taken to the power of the corresponding elements of the column vector a in Matrix 6.6 that

are greater than zero (p'1). This is the probability that all messages passing through transition a
arrive within tolerance. All columns of rows of a that are greater than zero that have greater than
zero values form the input set ({/„}) for on(/, J2). Since transition a has only one input, a ({a}) is

69

one. When transition a fires, column vector a is added to column vector m0 to generate a new

vector fhx. Matrix 6.8 results after transition a fires. Continuing in this manner, Matrix shows the

result after transition b fires. Since cn({b}) is one, row LP> of m2 is 0.3.

Figure 6.6. Example of ?„, Analysis.

a

LPl(1

M(

LP2

LP3

LPA

LP5

LP7

-1

1

0

0

0

0

0

-1

0

0

1

-1

0

0

0

c

0

1

-1

0

0

-1

0

0

0

0

0

-1

0
1

0

1

e

1

0

0

0

1

0

-1

0

/

0

0

0

0

0

0
1

-1

m0

0^

1

0

0

1

0

0

(6.6)

70

1-p, ot

Ml =

LPX '0.7^

LP2
0.2

LP3 0.3

LP4 0.4
p ~LP5

LP6

LP7

LP8

0.6

0.4

0.2

[o.l,

a b c d e / mi

U\
r 1 -1 0 0 1 0 0.7

LP2
-1 0 1 0 0 0 0

LP3 1 0 -1 0 0 0 0.3

LP4 0 1 0 -1 0 0 0

LP5 0 -1 0 0 1 0 1

LP6
0 0 -1 1 0 0 0

LPj 0 0 0 0 -1 1 0

LPS 0
V

0 0 1 0 -1 0

(6.7)

(6.8)

Mo =

a b c d e / m2

u\ f 1 -1 0 0 1 0 0

LP? -1 0 1 0 0 0 0

us 1 0 -1 0 0 0 0.3

LP4 0 1 0 -1 0 0 0.3

LP5 0 -1 0 0 1 0 0

LP6
0 0 -1 1 0 0 0

LP7 0 0 0 0 -1 1 0

LP8 [0 0 0 1 0 -1 0

(6.9)

The analysis presented in this section reduces the time and topological complexities
characteristic of more explicit time analysis methods to simpler and more insightful matnx
manipulations. The method presented is used in the following section to determine the

probability of rollback due to messages, P„=l- 0,(7, ,/2).

71

Also, the worst case proportion of out-of-order messages (X) is calculated as follows. The
(a(/pZ,)) is a measure of the maximum difference in the rate of firing among transitions. The
maximum possible value of o(IuI2) that can occur is the rate of the slowest firing transition in
sets /,,/,. Equation 6.10 shows the relationship between E[X] and the rate at which transition I
fires.

£[XJ< min {rate (Transition)}
{Transitione /,,/,}

(6.10)

6.1.1 T-Invariants

An alternative analysis of the likelihood of out-of-order message arrival at a logical process
and quantitative synchronization analysis can be derived from invariants in the Petri-Net
representation of the Active Virtual Network Management Predication system. T-invariants are
transition vectors whose values are the number of times each transition fires in order to obtain
the same marking. P-variants are sets of places that always contain the same number of tokens.
In (J. Martinez and Silva, 1982) an algorithm is given to determine all the invariants of
generalized and capacity Petri-Nets.

Figure 6.7 provides an example of a sample active network not yet enhanced with Active
Virtual Network Management Prediction. The active network nodes are illustrated as well as the
end-systems and the active packet. A Petri-Net representation of this network is derived as
follows. The logical processes are injected into the network and persist at the active nodes to be
AVNMP-enhanced as shown in Figure 6.8. The Active Virtual Network Management Prediction
system was developed using the Magician (Kulkarni et al., 1998) execution environment; the
driving processes, logical processes, and virtual messages are implemented as active packets.
The driving processes reside at the edge of the region to be enhanced with AVNMP. Virtual
messages now enter the picture.

This analysis considers the number of transition firings as the local virtual time. Thus, the
logical processes are transitions. The token represents an update to the local virtual time of the
logical process driven by the receive time of a virtual message that has been processed. Thus, in
the transition from Figure 6.8 to 6.9, the driving processes become token generators and logical
processes become Petri-Net transitions. The active packets that were virtual messages become
Petri-Net tokens.

Node 3

End-
System

f \
Active Packet

^ J

1 MnH oil

End-
System

Node 4

Node 2

Node 5

Figure 6.7. Active Network Configuration for T-Invariant Analysis.

72

Driving
Process

Driving
Process

End-
System

Figure 6.8. Active Network with AVNMP for T-Invariant Analysis.

End
System

Transition
5

Figure 6.9. Petri-Net Representation of Active Network with AVNMP for T-Invariant Analysis.

A rollback occurs when an incoming virtual message has a less than the logical process s.
The receive time of a virtual message is determined by the local virtual time of the sending
logical process. It is assumed that the receive time cannot be less than the local virtual time of
the sending logical process. Let T. be the total number of transition firings for logical process;.
When a token arrives at logical process; from logical process i, a rollback does not occur as long
as T < T A logical process can receive virtual messages from more than one logical process. Let
T' be the set of all inputs to logical process ;. Then VTk e T,': Tk < Tf If N is a matrix form of the
Petri-Net as used in the previous section, Matrix 6.6 for example, and x is a vector of transitions,
the T-Invariant is computed as shown in Equation 6.11. Based upon the set of x that satisfy 6.11,
it is possible to determine whether; will rollback, and if so, how many of the possible invariants

cause a rollback.

73

6.2 EXPECTED SPEEDUP: r\

This section analyzes the primary benefit of Active Virtual Network Management Prediction,
namely expected lookahead into the future. This depends on the rate that the system can generate
and handle predictions. This rate is referred to as speedup, because when these values were
cached and used, they increase the rate at which the system executes. There are many factors
which influence speedup including out-of-order message probability, out-of-tolerance state value
probability, rate of virtual messages entering the system, task execution time, task partitioning
into Logical Processes, rollback overhead, prediction accuracy as a function of the distance into
the future which predictions are attempted, and the effects of parallelism and optimistic
synchronization. All of these factors are considered, beginning with a direct analysis using
definitions from optimistic simulation.

The definition of Global Virtual Time (GVT) can be applied to determine the relationship
among expected task execution time (xMjt), the real time at which the state was cached (tSQ), and
real time (r). Consider the value (Vv), which is cached at real time tSQ in the SQ resulting from a
particular predicted event. For example, refer to Figures 5.16 through 5.20 and notice that state
queue values may be repeatedly added and discarded as Active Virtual Network Management
Prediction operation proceeds in the presence of rollback. As rollbacks occur, values for a
particular predicted event may change, converging to the real value (V). For correct operation of
Active Virtual Network Management Prediction, Vv should approach Vr as t approaches GVT(t)
where GVT(i) is the GVT of the Active Virtual Network Management Prediction system at time r.
Explicitly, this is Ve > 0 35 > 0 s.t. \f(t) -f{GVT(t))\ <&=>0< \GVT(t) - t\ < 5 where/(r) = Vr and
f(GVT(t)) = Vv. f(t) is the prediction function of a driving process. The purpose and function of
the driving process has been explained in Section 7. Because Active Virtual Network
Management Prediction always uses the correct value when the predicted time (x) equals the
current real time (r) and it is assumed that the predictions become more accurate as the predicted
time of the event approaches the current time, the reasonable assumption is made that lim^^x)
= Vv. In order for the Active Virtual Network Management Prediction system to always look
ahead, Vr GVT(t) > t. This means that Vn e {LPs} and Vr LVTlpn(i) > t and minm e {M) { m } > t
where m is the receive time of a message, M is the set of messages in the entire system and LVTlpn

is the of the rih Logical Process. In other words, the Local Virtual Time of each must be greater
than or equal to real time and the smallest message not yet processed must also be greater than or
equal to real time. The smallest message could cause a rollback to that time. This implies that
\/n,t LVTjJj) > t. In other words, this implies that the Logical Virtual Time of each driving
process must be greater than or equal to real time. An out-of-order rollback occurs when m <
LVT{t). The largest saved state time such that tSQ < m is used to restore the state of the Logical
Process, where tSQ is the real time the state was saved. Then the expected task execution time
(xMjt) can take no longer than tSQ - t to complete in order for GVT to remain ahead of real time.
Thus, a constraint between expected task execution time (Tlask), the time associated with a state
value (r5fi), and real time (r) has been defined. What remains to be considered is the effect of out-
of-tolerance state values on the rollback probability and the concept of stability in Active Virtual
Network Management Prediction.

74

6.2.1 Rollback Rate
Stability in Active Virtual Network Management Prediction is related to the ability of the

system to reduce the number of rollbacks. An unstable system is one in which there exist enough
rollbacks to cause the system to take longer than real-time to reach the end of the Sliding
Lookahead Window. This window has a length of Lookahead time units. One end of the window
follows the current wallclock time and the other is the distance to which the system should
predict. Rollback is caused by the arrival of a message that should have been executed in the past
and by out-of-tolerance states. In either case, messages that had been generated prior to the
rollback are false messages. Rollback is contained by sending anti-messages to cancel the effects
of false messages. The more quickly the anti-messages overtake the effect of false messages, the
more efficiently rollback is contained.

One cause of rollbacks in Active Virtual Network Management Prediction is real messages
that are out of tolerance. Those processes that require a higher degree of tolerance are most likely
to rollback. A worst case probability of out-of-tolerance rollback for a single process, shown in
Equation 6.12, is based on Chebycheffs Inequality (Papoulis, 1991) from basic probability. The
variance of the data is a2 and 9 is the acceptable tolerance for a configuration process.
Therefore, the performance gains of Active Virtual Network Management Prediction are reduced
as a function of Pm. At the cost of increasing the accuracy of the driving process(es), that is,
decreasing o2 in Proposition 1, Pol becomes small thus increasing the performance gain of Active
Virtual Network Management Prediction.

Proposition 1

The probability of rollback of an LP is

2

P0t*
(6.12)

©2

where Pol is the probability of out-of-tolerance rollback for an LP, d is the variance in the

amount of error, and 0 is the tolerance allowed for error.

The expected time between rollbacks for the Active Virtual Network Management Prediction
system is critical for determining its feasibility. The probability of rollback for all processes is
the probability of out-of-order message occurrence and the probability of out-of-tolerance state
values (Prb = P00 + PJ. The received message rate per is Rm and there are AT Logical Processes.
The expected inter-rollback time for the system is shown in Equation 6.13.

Proposition 2

TJie expected inter-rollback time is

Tfb_ I 1 (6.13)
Kb RmNPrb

where Trb is the expected inter-rollback time, \b is the expected rollback rate, Rm is the received
message rate per, there are N es, and Prb is the probability of rollback per process.

75

6.2.2 Single Processor Logical Processes

Multiple Logical Processes on a single processor lose any gain in concurrency since they are
being served by a single processor; however, the Logical Processes can maintain the Active
Virtual Network Management Prediction lookahead if partitioned properly. The single processor
logical processes receive virtual messages expected to occur in the future as well as real
messages. Because single processor logical processes reside on a single processor, they are not
operating in parallel as logical processes do in an optimistic simulation system; thus a new term
needs to be applied to a task partitioned into Logical Processes on a single processor. Each
partition of tasks into Logical Processes on a single processor is called a Single Processor
Logical Process (SLP). In the upper portion of Figure 6.10, a task has been partitioned into two
logical processes. The same task exists in the lower portion of Figure 6.10 as a single Logical
Process. If task B must rollback because of an out-of-tolerance result, the entire single Logical
Process must rollback, while only the Logical Process for task B must rollback in the multiple
case. Thus partitioning a task into multiple Logical Processes saves time compared to a single
task. Thus, without considering parallelism, lookahead is achieved by allowing the sequential
system to work ahead while individual tasks within the system are allowed to rollback. Only
tasks that deviate beyond a given pre-configured tolerance are rolled back. Thus entire pre-
computed and cached results are not lost due to inaccuracy; only parts of pre-computed results
must be re-computed. There are significant differences in the behavior of SLP, MLP, and hybrid
systems. Each system needs to be analyzed separately.

r

(f<\ B ^
I SLP 1 SLP j

Processor
V. J

B Rollback

 1 » t *
Virtual Time

(S "N. 1

/AB A
I SLP J

Processor

o nuuuabK

 t *
Virtual Time

Figure 6.10. Single and Multiple Processor Logical Process System.

Consider the optimal method of partitioning a single processor system into Single Processor
Logical Processes in order to obtain speedup over a single process. Assume n tasks, taskv ...,
taskn, with expected execution times of xv ..., xa, and that taskn depends on messages from taskn^
with a tolerance of 0n. This is the largest error allowed in the input message such that the output
is correct. Using the results from Proposition 4.1, it is possible to determine a partitioning of
tasks into logical processes such that speedup is achieved over operation of the same tasks
encapsulated in a single Logical Process. Figure 6.11 shows possible groupings of the same set
of six tasks into logical processes. It is hypothesized that the tasks that are most likely to rollback
and those that take the greatest amount of time to execute should be grouped together within
Single Processor Logical Processes to minimize the rollback time. There are 2"'1 possible
groupings of tasks into Single Processor Logical Processes, where n is the number of tasks and

76

message dependency among the tasks is maintained. Those tasks least likely to rollback and
those mat execute quickly should be grouped within a single Single Processor to reduce the
overhead of rollback. For example, if all the tasks in Figure 6.11 have an equal probability of
rollback and x, » max{ T„ T3, ... } then the tasks should be partitioned such that task, is in a

separate Single Processor : (taskx

into sequential logical processes.

task, | task,... taskn) where "|" indicates the grouping of tasks

U»! LP2 LP3 LP4 LP5 LP6

Figure 6.11. Possible Partitioning of Tasks into Logical Processes on a Single Processor.

For example, the expected execution time for five tasks with equal probabilities of rollback
of 0 1 are shown in Figure 6.12. It is assumed that these tasks communicate in order starting
from Task 1 to Task 5 in order to generate a result. In Figure 6.12, the x-axis indicates the
boundary between task partitions as the probability of rollback of task 5 is varied. With an x-
value of 3 the solid surface shows the expected execution time for the first three tasks combined
within a single and the remainder of the tasks encapsulated in separate Logical Processes. The
dashed surface shows the first three tasks encapsulated in separate Logical Processes and the
remainder of the tasks encapsulated within a Logical Process. The graph in Figure 6.12 indicates
a minimum for both curves when the high probability rollback tasks are encapsulated in separate
Logical Processes from the low probability of rollback tasks. As the probability of rollback
increases, the expected execution time for all five processes is minimized when Task 5 is
encapsulated in a separate Logical Process.

77

AVNMP LP Partitioning

■°i

«.Ü

UJ

15000 -

10000 -

FirstNsep(x,5,y,VMU)
FirstNsep(x,5,y,VMU)

FirstNComb(x,5,y,VMU)
FirstNComb(x,5,y,VMU)

Figure 6.12. Optimal Single Processor Logical Process Partitioning.

6.2.2.1 Task Partition Analysis

Consider an example of Active Virtual Network Management Prediction used for traffic
prediction. Assume the computation time is exponentially distributed with mean [l/(u.r2)]. As a
simplified example, assume the packet forwarding operation for a router of type A is also
exponentially distributed with mean [l/(fxrl)]. The router of type B has a rollback probability of
Pa and takes time xr2 to rollback. The router of type A has a rollback probability of Prl and takes
time Trl to rollback. If both operations are encapsulated by a single logical process, then the
expected time of operation is shown in Equation 6.14. If each operation is encapsulated in a
separate logical process, then the expected time is shown in Equation 6.15. Equations 6.14 and
6.15 are formed by the sum of the expected time to execute the task, which is the first term, and
the rollback time, which is the second term. The probability of rollback in the combined Logical
Process is the probability that either task will rollback. Therefore, the expected execution time of
the tasks encapsulated in separate Logical Processes is smaller since xst < T„

^combined
1 1
 +

M,
+ 1 1
 +

Mr, Pn K+^K+^J (6.14)

' separate
M
— + Pr nr

' 1 ' 2
r, Mr,

f

+
V

 H Pr7tr

Mr, Mr, ' '
(6.15)

The grouping of tasks into Single Processor Logical Processes can be done dynamically, that
is, while the system is in operation. This dynamic adjustment is currently outside the scope of
this research but related to optimistic simulation load balancing (Glazer, 1993, Glazer and

78

Tropper, 1993) and the recently developed topic of optimistic simulation dynamic partitioning
(Bouker'che and Tropper, 1994, Konas and Yew, 1995).

6.2.3 Single Processor Logical Process Prediction Rate

The Local Virtual Time is a particular Logical Process's notion of the current time. In
optimistic simulation the Local Virtual Time of individual processes may be different from one
another and generally proceed at a much faster rate than real time. Thus, the rate at which a
Single Processor system can predict events (prediction rate) is the rate of change of the Single
Processor Logical Process's Local Virtual Time with respect to real time. Assume a driving
process whose virtual message generation rate is X m. The Local Virtual Time is increased by the
expected amount A^ every [1/(X J] time units. The expected time spent executing the task is x
The random variables X and Y are the proportion of messages that are out-of-order and out-ol-
tolerance respectively. The expected real time to handle a rollback is v Then the Single
Processor Logical Process's Local Virtual Time advances at the expected rate shown in

Proposition 3.
Proposition 3 [Single Processor Logical Process Speed] The average prediction rate of a

single logical processor system is

LVT
S cache = " = ^vm

f

, Km ~*task -ktask +*rb)E[X]-

r , \ \
"vm

1

A„
E[Y]

V V "vmJ

(6.16)

where the virtual message generation rate is Avm, the expected lookahead per message is Avm, the
proportion of out-of-order messages is X, the proportion of out-of-tolerance messages is Y, Tmk is
the expected task execution time in real time, xrb is the expected rollback overhead time in real
time, LVT is the Local Virtual Time, and t is real time.

In Proposition 3, the expected lookahead per message (A J is reduced by the real time taken
to process the message (O. The expected lookahead is also reduced by the time to re-execute
the task (T k) and the rollback time (xj times the proportion of occurrences of an out-of-order
message (E[X]) that results in the term (xtask + xj E[X]. Finally, the derivation of the (AM -
[1/(A.)]) E[Y] term is shown in Figure 6.13. In Figure 6.13, a real message arrives at time t. Note
that real time t and Local Virtual Time are both shown on the same time axis in Figure 6.13. The
current Local Virtual Time of the process is labeled at time LVT{t) in Figure 6.13. The dotted
line in Figure 6.13 represents the time A^ - [1/(X J] that is subtracted from the when an out-of-
tolerance rollback occurs. The result of the subtraction of Am - [1/fl.J] from the LVT(t) results
in the Local Virtual Time returning to real time as required by the algorithm. The virtual
message inter-arrival time is [1/ftJ]. Note that the (Avra - [1/(XJD ™ term causes the
speedup to approach 1 based on the frequency of out-of-tolerance rollback (E[Y]).

79

Out of Tolerance Rollback

A»m- 1A.,

Real Time

Virtual Message Lookahead

Virtual Message Arrival Time

Real Message Arrival Time

' vm "/lvm

LVT (t)

Figure 6.13. Out-of-Tolerance Rollback.

V/(JC *)+ Ar Wh(x *)+ ßT Vg {x *) = 0

HTg(x*) = 0
fi>0

(6.17)

6.2.4 Sensitivity

If the proportion of out-of-tolerance messages, Y, cannot be reduced to zero, the virtual
message generation rates and expected virtual message lookahead times can be adjusted in order
to improve speedup. Given the closed form expression for Active Virtual Network Management
Prediction speedup in Proposition 3, it is important to determine the optimal values for each
parameter, particularly X^ and A^ and in addition, the sensitivity of each parameter. Sensitivity
information indicates parameters that most affect the speedup. The parameters that most affect
the speedup are the ones that yield the best results if optimized.

One technique that optimizes a constrained objective function and that also determines the
sensitivity of each parameter within the constraints is the Kuhn-Tucker method (Luenberger,
1989, p. 314). The reason for using this method rather than simply taking the derivative of
Equation 6.16 is that the optimal value must reside within a set of constraints. Depending on the
particular application of Active Virtual Network Management Prediction, the constraints may
become more complex than those shown in this example. The constraints for this example are
discussed in detail later. The sensitivity results appear as a by-product of the Kuhn-Tucker
method. The first order necessary conditions for an extremum using the Kuhn-Tucker method are
listed in Equation 6.17. The second order necessary conditions for an extremum are given in
Equation 6.18, where L must be positive semi-definite over the active constraints and L, F, H,
and G are Hessians. The second order sufficient conditions are the same as the first order
necessary conditions and the Hessian matrix in Equation 6.18 is positive definite on the subspace
M = {y:V/z(x) y = 0,Vg;.(x) y = 0 for all je J}, where J = {j: gfpt) = 0,^ > 0}. The sensitivity is
determined by the Lagrange multipliers, XT and u.T. The Hessian of the objective function and of
each of the inequality constraints is a zero matrix; thus, the eigenvalues L in Equation 6.18 are
zero and the matrix is clearly positive definite, satisfying both the necessary and sufficient
conditions for an extremum.

80

L(x*)= F{x*)+ÄT H(x*)+ HTG{x*) (6.18)

The function / in Equation 6.17 is the Active Virtual Network Management Prediction
speedup given in Equation 6.16. The matrix h does not exist, because there are no equality
constraints, and the matrix g consists of the inequality constraints that are specified in Equation

6.20.
Clearly the upper bound constraints on E[X] and E[Y] are the virtual message rate. The

constraints for x^ and xrb are based on measurements of the task execution time and the time to
execute a rollback. The maximum value for Xm is determined by the rate at which the virtual
message can be processed. Finally, the maximum value for Avm is determined by the required
caching period. If A^ is too large, there may be no state in the SQ with which to compare an

incoming real message.
From inspection of Equation 6.16 and the constraint shown in Equation 6.19, the constraints

from are Am = 45.0, T^ = 5.0, TA = 1.0, E[X] = 0.0, E[Y\ = 0.0 that results in the optimal solution
shown in Equation 6.22. The Lagrange multipliers u., through \i6 show that E[Y] (-ji6 = -8.0), Xm

(-(X = -40.0), and E[X] (~\i5 = -1.2) have the greatest sensitivities. Therefore, reducing the out-
of-tolerance rollback has the greatest effect on speedup. However, the effect of optimistic
synchronization on speedup needs to be studied.

iKn
1 (6.19)

* task+(* task+*rb)E[X] + ZAi/m

Kn
E[Y]

0.0 < A™ < (6.20)

* task+(* task+* rb)E[x]+

0.1 <Avm< 45.0(8.21)

5.0 <ztask< 10.0
1.0<Tri<2.0

O.O<E[X]<I.O

O.O<E[Y]<I.O

^=1.0,^1=40.0

Avm = 45.0, n2 =0.2

^=0.0,^=0.2

T^ =0.0,^4=0.0
E[X]= 0.0, fi5 =1.2

£[r]=O.0,^6=8.0

^vm
Kn

E[Y]

(6.22)

81

6.2.5 Sequential Execution Multiple Processors

At the time of this writing, a comparison of optimistic synchronization with sequential
synchronization cannot be found in the literature because there has been little work on techniques
that combine optimistic synchronization and a real time system with the exception of hybrid
systems such as the system described in (Bagrodia and Shen, 1991). The hybrid system described
in (Bagrodia and Shen, 1991) is used as a design technique in which distributed simulation LPs
are gradually replaced with real system components allowing the emulated system to be executed
as the system is built. It does not focus on predicting events as in Active Virtual Network
Management Prediction. This section examines sequential execution of tasks, which corresponds
with non-Active Virtual Network Management Prediction operation as shown in Figure 6.14 in
order to compare it with the Active Virtual Network Management Prediction algorithm in the
next section. As a specific example, consider K virtual messages with load prediction values
passing through P router forwarding processes and each process has an exponential processing
time with average [l/(jx)]. In the sequential case, as might be done within the centralized
manager as shown in Figure 6.1, the expected completion time should be K times the summation
of P exponential distributions. The summation of P exponential distributions is a Gamma
Distribution as shown in the sequential execution probability distribution function in Equation
6.23. The average time to complete K tasks is shown in Equation 6.24.

h(Ap^)--
P
r(p)

xP~l exp-M* x > 0

x<0

(6.23)

1 seq = K\xfT{x\P,ii)
JO

dx (6.24)

Chandy-Misra

O Synchronization Point □ Logical Process

Figure 6.14. Sequential Model of Operation.

6.2.6 Asynchronous Execution Multiple Processors

Assume that an ordering of events is no longer a requirement. This represents the
asynchronous Active Virtual Network Management Prediction case and is shown in Figure 6.15.
Note that this is the analysis of speedup due to parallelism only, not the lookahead capability of
asynchronous Active Virtual Network Management Prediction. This analysis of speedup

82

assumes messages arrive in correct order and thus there is no rollback. However, this also
assumes that there are no optimization methods such as lazy cancellation. Following (Felderman
and Kleinrock, 1990) the expected completion time is approximated by the maximum of P K-
stage Erlangs where P is the number of processes which can execute in parallel at each stage of
execution. A AT-stage Erlang model represents the total service time as a series of exponential
service times, where each service time is performed by a process residing on an independent
processor in this case. There is no need to delay processing within the K-stage model because of
inter-process dependencies, as there is for synchronous and sequential cases. Equation 6.25
shows the pdf for a K-stage Erlang distribution.

/rW: \xe -fix (ßx) ,K-1

(K-l)
(6.25)

o
o
o

O Synchronization Point □ Logical Process

Figure 6.15. Active Virtual Network Management Prediction Model of Parallelism.

As pointed out in (Felderman and Kleinrock, 1990), the probability that a ÜT-stage Erlang
takes time less than or equal to t is 1 minus the probability that the Z-stage Erlang distribution
takes time greater than t, which is simply one minus the probability that there are K arrivals in
the interval [0,f] from a Poisson process at rate u, This result is shown in Equation 6.26.

l!
i=0

'async = I [l-FT(x)]dx
Jo

(6.26)

(6.27)

The expected value is shown in Equation 6.27. This integral is hard to solve with a closed
form solution and (Felderman and Kleinrock, 1990) instead try to find an approximate equation.
This study attempts to be exact by using Equation 6.27 and solving it numerically (Kleinrock,
1975, p. 378). In Equation 6.28 Sparaikl is the speedup of optimistic synchronization over strictly
sequential synchronization and is graphed in Figure 6.16 as a function of the number of
processors. The speedup gained by parallelism (S^J augments the speedup due to lookahead
(S ,) as shown in Equation 6.29, where the {PR) is the Active Virtual Network Management

83

Prediction speedup and X and Y are random variables representing the proportion of out-of-order
and out-of-tolerance messages respectively.

" parallel

1 seq

r 1async

(6.28)

PR X,Y = A„ ^vm^ parallel ztask vtask ^^rbW ^vm^ parallel

\ ^
Y

))

(6.29)

There is clearly a potential speedup in Active Virtual Network Management Prediction in
contrast to a single processor model of the network. The Active Virtual Network Management
Prediction algorithm implementation is able to take advantage of both Single Processor Logical
Processes (Slogical Process) lookahead without parallel processing and speedup due to parallel
processing because Active Virtual Network Management Prediction has been implemented on
many nodes throughout the network and each node has its own processor. Note that while
Clustered Time Warp (Avril, 1996), which was developed concurrently but independently of
Active Virtual Network Management Prediction, uses a similar concept to Single Processor
Logical Processes and Logical Process, it does not consider a real-time system as in Active
Virtual Network Management Prediction.

AVNMP Bandwidth Overhead
2.07

2.06

2.05 -

5 m
Q.
S
z
>
<
c
o
z
•S 2.04

•a
0)

01 >
O

m

2.03

2.02 -

2.01

0.4 0.6

Probability of Rollback

Figure 6.16. Speedup of AVNMP over Non-AVNMP Systems Due to Parallelism.

6.2.7 Multiple Processor Logical Processes

The goal of Active Virtual Network Management Prediction is to provide accurate
predictions quickly enough so that the results are available before they are needed. Without
taking advantage of parallelism, a less sophisticated algorithm than Active Virtual Network

84

Management Prediction could run ahead of real-time and cache results for future use. This is
done In the Sequential Processor system, which assumes strict synchronization between
processes whose prediction rate is defined in Proposition 3. With such a simpler mechanism, P00

and E[X] are always zero. However, simply predicting and caching results ahead of time does not
fully utilize inherent parallelism in the system as long as messages between Logical Processes
remain strictly synchronized. Strict synchronization means that processes must wait until all
messages are insured to be processed in order. Any speedup to be gained through parallelism
comes from the same mechanism as in optimistic parallel simulation; the assumption that
messages arrive in order by TR, thus eliminating unnecessary synchronization delay. However,
messages arrive out-of-order in Active Virtual Network Management Prediction for the
following reasons. A general-purpose system using the Active Virtual Network Management
Prediction algorithm may have multiple driving processes, each predicting at different rates into
the future. Another reason for out-of-order messages is that Logical Processes are not required to
wait until processing completes before sending the next message. Also, processes may run faster
for virtual computations by allowing a larger tolerance. Finally, for testing purposes, hardware or
processes may be replaced with simulated code, thus generating results faster than the actual
process would. Thus, although real and future time are working in parallel with strict
synchronization, no advantage is being taken of parallel processing. This is demonstrated by the
fact that, with strict synchronization of messages, the same speedup (ScacJ as defined in
Proposition 3 occurs regardless of whether a single processor or multiple processors are used.
What differentiates Active Virtual Network Management Prediction is the fact that it takes
advantage of inherent parallelism in the system as compared to a sequential non-Active Virtual
Network Management Prediction pre-computation and caching method. Thus it is better able to
meet the deadline imposed by predicting results before they are required. To see why this is true,
consider what happens as the overhead terms in Proposition 3, xlast - (xtask + TJ E[X]- (AvmSparallel -
[1/(^.J]) E[Y], approach Avm. The prediction rate becomes equal to real-time and can fall behind
real-time as x^ - (x^ +\b) E[X]- (AvmSpamllel - [1/ftJ]) EW becomes larger. Optimistic
synchronization helps to alleviate the problem of the prediction rate falling behind real-time.
Optimistic synchronization has another advantageous property, super-criticality. A super critical
system is one that can compute results faster than the time taken by the critical path through the
system. This can occur in Active Virtual Network Management Prediction using the lazy
cancellation optimization as discussed in Section 7. Super-criticality occurs when task execution
with false message values generates a correct result. Thus prematurely executed tasks do not
rollback and a correct result is generated faster than the route through the critical path.

The Active Virtual Network Management Prediction algorithm has two forms of speedup
that need to be clearly defined. There is the speedup in availability of results because they have
been pre-computed and cached. There is also the speedup due to more efficient usage of
parallelism. The gain in speedup due to parallelism in Active Virtual Network Management
Prediction can be significant given the proper conditions. In order to prevent confusion about the
type of speedup being analyzed, the speedup due to pre-computing and caching results is defined
as 5 rhe and the speedup due to parallelism is defined as Sparalld. Speedup due to parallelism among
multiple processors in Active Virtual Network Management Prediction is gained from the same
mechanism that provides speedup in parallel simulation, that is, it is assumed that all relevant
messages are present and are processed in order by receive time. The method of maintaining
message order is optimistic in the form of rollback. The following sections look at Spamlkl due to a
multiprocessor configuration system.

85

6.2.8 AVNMP Prediction Rate with a Fixed Lookahead

There are three possible cases to consider when determining the speedup of Active Virtual
Network Management Prediction over non-lookahead sequential execution. The speedup given
each of these cases and their respective probabilities needs to be analyzed. These cases are
illustrated in Figures 6.17 through 6.19. The time that an event is predicted to occur and the
result cached is labeled tvjrlualevent, the time a real event occurs is labeled tnalevatt, and the time a result
for the real event is calculated is labeled t _ .In Active Virtual Network Management no-avnmp c?

Prediction, the virtual event and its result can be cached before the real event, as shown in Figure
6.17, between the real event and the time the real event result is calculated as shown in Figure
6.18, or after the real event result is calculated as shown in Figure 6.19. In each case, all events
are considered relative to the occurrence of the real event. It is assumed that the real event occurs
at time t. A random variable called the lookahead (LA) is defined as LVT - t. The virtual event
occurs at time t - LA. Assume that the task that must be executed once the real event occurs
takes xlask time. Then without Active Virtual Network Management Prediction the task is
completed at time t + xtask.

virtual event ■ real event no-avnmp

t-LA t t+Tfcsk Time

Figure 6.17. AVNMP Prediction Cached before Real Event.

real event virtual event • no-avnmp

t-LA t+W Time

Figure 6.18. AVNMP Prediction Cached Later than Real Event.

1 real event ■ no-avnmp virtual event

t+T. task t-LA Time

Figure 6.19. AVNMP Prediction Cached Slower than Real Time.

86

The prediction rate has been defined in Equation 6.29 and includes the time to predict an
event and cache the result in the State Queue. Recall that in Section 2 the expected value of X has
been determined based on the inherent synchronization of the topology. It was shown that X has
an expected value that varies with the rate of hand-offs. It is clear that the proportion of out-of-
order messages is dependent on the architecture and the partitioning of tasks into Logical
Processes. Thus, it is difficult in an experimental implementation to vary X. It is easier to change
the tolerance rather than change the architecture to evaluate the performance of Active Virtual
Network Management Prediction. For these reasons, the analysis proceeds with PRXJIX = E!xr Since
the prediction rate is the rate of change of Local Virtual Time with respect to time, the value of
the Local Virtual Time is shown in Equation 6.30, where C is an initial offset. This offset may
occur because Active Virtual Network Management Prediction may begin running C time units
before or after the real system. Replacing LVT in the definition of LA with the right side of
Equation 6.30 yields the Equation for lookahead shown in Equation 6.31.

vm
\\ + c (6-3°) LVTX.Y\x=E[x] = ^vm &vmS parallel -^task ~{Ttask +^rb)E\.X\~\ AvmS'parallel ,

LAXJ\X=E[X] = (LVTX,Y\X=E[X)-1) + C (631)

The probability of the event in which the Active Virtual Network Management Prediction
result is cached before the real event is defined in Equation 6.32. The probability of the event for
which the Active Virtual Network Management Prediction result is cached after the real event
but before the result would have been calculated in the non-Active Virtual Network Management
Prediction system is defined in Equation 6.33. Finally, the probability of the event for which the
Active Virtual Network Management Prediction result is cached after the result would have been
calculated in a non-Active Virtual Network Management Prediction system is defined in
Equation 6.34.

Pcache = P^AX,Y\X =E[x] > Xtask J (632)

Plate =P]P^LAX,Y\X=E[x]^taskl (633>

PüoW=Pp^X,Y\X=E[X]<*\ (6-34)

The goal of this analysis is to determine the effect of the proportion of out-of-tolerance
messages (Y) on the speedup of an Active Virtual Network Management Prediction system.
Hence0 we assume that the proportion Y is a binomially distributed random variable with
parameters n and p where n is the total number of messages and p is the probability of any single
message being out of tolerance. It is helpful to simplify Equation 6.31 by using y, and y2 as
defined in Equations 6.36 and 6.37 in Equation 6.35.

Ux,Y\X=E[x]=Yl-r2Y (6-35)

Yl = (KmKmSparallel -Km*task -*M*rb +*task)E[X]-l)t + C (6.36)

87

Y2=K ^vm^ parallel
Kn

■ + r rb (6.37)

The early prediction probability as illustrated in Figure 6.17 is shown in Equation 6.38. The
late prediction probability as illustrated in Figure 6.18 is shown in Equation 6.38. The probability
for which Active Virtual Network Management Prediction falls behind real time as illustrated in
Figure 6.19 is shown in Equation 6.40. The three cases for determining Active Virtual Network
Management Prediction speedup are thus determined by the probability that Y is greater or less
than two thresholds.

PlVJ-Pcache X,Y\X=E[X] = P Y< Y\-rtask

72
(6.38)

P2(*)~ Plate X,Y\X =E[X] ~ P
Y\ ~xtask <y 7l

72 72
(6.39)

P^VJ-Psiow X,Y\X=E[X]-P Y> XL
72

(6.40)

The three probabilities in Equations 6.38 through 6.40 depend on (Y) and real time because
the analysis assumes that the lookahead increases indefinitely, which shifts the thresholds in such
a manner as to increase Active Virtual Network Management Prediction performance as real
time increases. However, the Active Virtual Network Management Prediction algorithm holds
processing of virtual messages once the end of the Sliding Lookahead Window is reached. The
hold time occurs when LA - A where A is the length of the Sliding Lookahead Window. Once A
is reached, processing of virtual messages is discontinued until real-time reaches Local Virtual
Time. The lookahead versus real time including the effect of the Sliding Lookahead Window is
shown in Figure 6.20. The dashed arrow represents the lookahead which increases at rate PR.
The solid line returning to zero is lookahead as the Logical Process delays. Because the curve in
Figure 6.20 from 0 to tL repeats indefinitely, only the area from 0 to tL need be considered. For
each Pt{t) i = 1,2,3, the time average over the lookahead time (tL) is shown by the integral in
Equation 6.41.

P
X,Y\X=E[X]

1LJQ
t{dt) (6.41)

n s Pcache X\X=E[xfr + [Plate X\X=E[x] + PsloW X\X =E[X])P
R

X ,Y\X =E[x] (6"42>

88

LA

A

real-time

Figure 6.20. Lookahead with a Sliding Lookahead Window.

The probability of each of the events shown in Figures 6.17 through 6.19 is multiplied by the
speedup for each event in order to derive the average speedup. For the case shown in Figure
6.17, the speedup (Cr) is provided by the time to read the cache over directly computing the
result. For the remaining cases the speedup is PRxyjX=mi that has been defined as {{LVTxm = m)li\
as shown in Equation 6.42. The analytical results for speedup are graphed in Figure 6.21. A high
probability of out-of-tolerance rollback in Figure 6.21 results in a speedup of less than one. Real
messages are always processed when they arrive at a Logical Process. Thus, no matter how late
Active Virtual Network Management Prediction results are, the system continues to run near real
time. However, when Active Virtual Network Management Prediction results are very late due to
a high proportion of out-of-tolerance messages, the Active Virtual Network Management
Prediction system is slower than real time because out-of-tolerance rollback overhead processing
occurs. Anti-messages must be sent to correct other Logical Processes that have processed
messages which have now been found to be out of tolerance from the current Logical Process.
This causes the speedup to be less than one when the out-of-tolerance probability is high. Thus,
PR . will be less than one for the "slow" predictions shown in Figure 6.19.

X, //A — L.{ XI

89

AVNMP Speedup Analysis

a.
3
■a
4)
0)
a.
tn
Q.
S
z
3

0 0.2 0.4 0.6 0.8 1

Expected Proportion of Out-of-Tolerance Messages (E[Y])

Figure 6.21. AVNMP Speedup.

6.3 PREDICTION ACCURACY

This section derives the prediction accuracy and bandwidth overhead of AVNMP and uses
these relationships along with the expected speedup from the previous section to analyze the
performance of AVNMP.

6.3.1 Prediction of Accuracy: a

Accuracy is the ability of the system to predict future events. A higher degree of accuracy
will result in more "cache hits" of the predicted state cache information. Smaller tolerances
should result in greater system accuracy, but this comes at the cost of a reduction in speedup.

Assume for simplicity that the effects of non-causality are negligible for the analysis in this
section. The effects of causality are discussed in more detail in Section 6.2. A Logical Process
may deviate from the real object it represents either because the Logical Process does not
accurately represent the actual entity or because events outside the scope of the predictive system
may effect the entities being managed. Ignore events outside the scope of the predictive system
for this analysis and consider only the deterministic error from inaccurate prediction of the
driving process. The error is defined as the difference between an actual message value at the
current time (vr) and a message value that had been predicted earlier (v). Thus the Message
Error is ME = v, - vp. Virtual message values generated from a driving process may contain
some error. It is assumed that the error in any output message generated by a process is a
function of any error in the input message and the amount of time it takes to process the
message. A larger processing time increases the chances that external events may have changed
before the processing has completed.

Two functions of total Accumulated message value error (AC(-)) in a predicted result are
described by Equations 6.43 and 6.44 and are illustrated in Figure 6.22. MElp0 is the amount of

90

error in the value of the virtual message injected into the predictive system by the driving process
(lp0). The error introduced into the value of the output message produced by the computation of
each is represented by the Computation Error function CElpn(MElpn_v tlpn). The real time taken for
the n Logical Process to generate a message is tlpn. The error accumulates in the State Queue at
each node by the amount CElpn{MEtpn_v tlpn), which is a function of the error contained in the input
message from the predecessor and the time to process that message. Figure 6.22 shows a driving
process (DP) generating a virtual message that contains prediction error (MElp0). The virtual
message with prediction error (MElp0) is processed by node LPl in t,pl time units resulting in an
output message with error, MElpl = CElp0(MElp0, tlpl).

Proposition 4

The accumulated error in a message value is Equation 6.43 and Equation 6.44.

N

ACn(n)=^CElPi(MElpi,tlPi) (6.43)

i=l

n

ACt(r)= lim \ CElp{MElp ,tlp) (6.44)

'Pi 1 = 1

a = Pr tan"
f^\

KdJ
>e (6.45)

Where Celpi is the computational error added to a virtual message value, MElpi is the virtual
message input error, and tlpi is the real time taken to process a virtual message.

Driving Process

Virtual
Message

CE |Po(ME |p0 ,

CE|Pl(ME|Pl,t|p2) (LP2

Xy (virtual message
generation rate)

Figure 6.22. Accumulated Message Value Error.

91

As shown in Proposition 4, ACn(n) is the total accumulated error in the virtual message
output by the n"1 from the driving process. AC,(x) is the accumulated error in x real time units
from the generation of the initial virtual message from the driving process. Equation is limIdpi —»
x ^ =," ACn(n), where n is the number of computations in time x. In other words, ACt(x) is the
error accumulated as messages pass through n Logical Processes in real time x. For example, if a
prediction result is generated in the third Logical Process from the driving process, then the total
accumulated error in the result is ACn(3). If 10 represents the number of time units after the
initial message was generated from the driving process, then ACt(10) would be the amount of
total accumulated error in the result. A cache hit occurs when |ACt(x)| < 0, where 0 is the
tolerance associated with the last Logical Process required to generate the final result. Equations
(6.43) and (6.44) provide a means of representing the amount of error in an Active Virtual
Network Management Prediction generated result. Once an event has been predicted and results
pre-computed and cached, it would be useful to know what the probability is that the result has
been accurately calculated, especially if any results are committed before a real message arrives.
The out-of-tolerance check and rollback does not occur until a real message arrives. If a resource
is allocated ahead of time based on the predicted result, then this section has defined a =
P[|ACt(A)| > 0] where 0 is the Active Virtual Network Management Prediction tolerance
associated with the last Logical Process required to generate the final result.

6.3.2 Bandwidth: ß

The amount of overhead in bandwidth required by Active Virtual Network Management
Prediction is due to virtual and anti-message load. With perfect prediction capability, there
should be exactly one virtual message from the driving process for each real message. The inter-
rollback time, [l/(Xrb)], has been determined in Proposition 3, Equation 6.13. Virtual messages
are arriving and generating new messages at a rate of \. Thus, the worst case expected number
of messages in the State Queue that will be sent as anti-messages is [(A.v)/(A,rb)] when a rollback
occurs. The bandwidth overhead is shown in Equation 6.46, where A.v is the virtual message load,
\ is the real message load, and \b is the expected rollback rate. The bandwidth overhead as a
function of rollback rate is shown in Figure 6.23. Scalability in Active Virtual Network
Management Prediction is the rate at which the proportion of rollbacks increases as the number
of nodes increases. The graph in Figure 6.24 illustrates the tradeoff between the number of
Logical Processes and the rollback rate given Xm = 0.03 virtual messages per millisecond, A^ =
30.0 milliseconds, x^ = 7.0 milliseconds, xrb =1.0 milliseconds, Sparallel = 1.5 and Cr = 100 where
Cr is the speedup gained from reading the cache over computing the result and Rm = [2/30 ms].
The rollback rate in this graph is the sum of both the out-of-order and the out-of-tolerance
rollback rates.

Proposition 5

The expected bandwidth overhead is

92

ß =

K
rb

■ + Xv + xr
(6.46)

where Xrb is the expected rollback rate, A is the expected virtual message rate, and A is the

expected real message rate.

6.3.3 Analysis of A VNMP Performance

Equation 6 47 shows the complete Active Virtual Network Management Prediction
performance utility. The surface plot showing the utility of Active Virtual Network Management
Prediction as a function of the proportion of out-of-tolerance messages is shown in Figure 6.25
where d>, <D , 4>b are one and Xm = 0.03 virtual messages per millisecond, Am = 30.0
milliseconds, x k = 7.0 milliseconds, trb = 1.0 milliseconds, SparalIe, = 1.5 and Cr = 100 where Cr is
the speedup gained from reading the cache over computing the result. The wasted resources
utility is not included in Figure 6.25 because there is only one level of message generation and
thus no error accumulation. The y-axis is the relative marginal utility of speedup over reduction
in bandwidth overhead SB = [(*,)/($„)]. Thus if bandwidth reduction is much more important
than speedup, the utility is low and the proportion of rollback messages would have to be kept
below 0 3 per millisecond in this case. However, if speedup is the primary desire relative to
bandwidth the proportion of out-of-tolerance rollback message values can be as high as 0.5 per
millisecond. If the proportion of out-of-tolerance messages becomes too high, the utility becomes
negative because prediction time begins to fall behind real time.

AVNMP Bandwidth Overhead

0.2 0.4 0.6
Probability of Rollback

0.8

Figure 6.23. AVNMP Bandwidth Overhead.

93

5.5
o 5
4) 4 5
££ 4
"3CQ
5a. 3.5

T^ 3
^2
01 ■*

2.5

■5? 7
oic s» o
OS
^
OQ

10 2(T^-^__ 30 4°l^-^^_ N 70 8°^r 0.1

Figure 6.24. AVNMP Scalability.

The effect of the proportion of out-of-order and out-of-tolerance messages on Active Virtual
Network Management Prediction speedup is shown in Figure 6.26. This graph shows that out-of-
tolerance rollbacks have a greater impact on speedup than out-of-order rollbacks. The reason for
the greater impact of the proportion of out-of-tolerance messages is that such rollbacks caused by
such messages always cause a process to rollback to real time. An out-of-order rollback only
requires the process to rollback to the previous saved state.

Figure 6.27 shows the effect of the proportion of virtual messages and expected lookahead
per virtual message on speedup. This graph is interesting because it shows how the proportion of
virtual messages injected into the Active Virtual Network Management Prediction system and
the expected lookahead time of each message can affect the speedup. The real and virtual
message rates are [0.1/ms], Rm = [2/30 ms], Xvm = 0.03 virtual messages per millisecond, A^ =
30.0 milliseconds, T^ = 7.0 milliseconds, trb =1.0 milliseconds, Spandlel =1.5 and Cr = 100 where
Cr is the speedup gained from reading the cache over computing the result.

UAVNMP = \Pcache X\X=E[x]Cr + [Plate X\X = E[x] + Pslow %\X = EiX]jPRX,Y\X = E[x])

'A ^

<S>s-p\ACt{A\>Q)s>, A, rb
<&y

(6.47)

94

Figure 6.25. Overhead versus Speedup as a Function of Probability of Rollback.

0.4

Ä 0.6
^ 0.7

Figure 6.26. Effect of Non-Causality and Tolerance on Speedup.

95

30 q^rr*-—-*»_ 40 aT*^»-»..
50 55^T~*-—^

0.8
^ J.7

- 0.6

^ 0.3 ,g»9

Figure 6.27. Effect of Virtual Message Rate and Lookahead on Speedup.

96

7

ASPECTS OF AVNMP PERFORMANCE

The following sections discuss other aspects and optimizations of the Active Virtual Network
Management Prediction algorithm including handling multiple future events and the relevance of
Global Virtual Time to Active Virtual Network Management Prediction. Since all possible alter-
native events cannot be predicted, only the most likely events are predicted in Active Virtual
Network Management Prediction. However, knowledge of alternative events with a lower prob-
ability of occurrence allow the system to prepare more intelligently.

Another consideration is the calculation of Global Virtual Time. This requires bandwidth and
processing overhead. A bandwidth optimization is suggested in which real packets may be sent
less frequently.

7.1 MULTIPLE FUTURE EVENTS

The architecture for implementing alternative futures discussed in Section 7, while a simple
and natural extension of the Active Virtual Network Management Prediction algorithm creates
additional messages and increases message sizes. Messages require an additional field to identify
the probability of occurrence and an event identifier. However, the Active Virtual Network Man-
agement Prediction tolerance is shown to provide consideration of events that fall within the tol-
erances 0n where ne N and N is the number of Logical Processes.

The set of possible futures at time t is represented by the set E. A message value generating
an event occurring in one of the possible futures is represented by Eval. As messages propagate
through the Active Virtual Network Management Prediction system, there is a neighborhood
around each message value defined by the tolerance (0n). However, each message value also ac-
cumulates error (AC„(«)). Let the neighborhood (EJ be defined such that EA < |0B - AC»| for
each ne {LPs}. Thus, |EA + AC»| < minne N 0n defines a valid prediction. The infinite set of
events in the neighborhood £A < |minn£ N Gn - AC»| are valid. Therefore, multiple future events
that fall within the bounds of the tolerances reduced by any accumulated error can be implicitly
considered.

97

7.2 GLOBAL VIRTUAL TIME

In order to maintain the lookahead (A), for the entire configuration system, it is necessary to
know how far into the future the system is currently predicting. The purpose of Global Virtual
Time is to determine A where A is used to stop the Active Virtual Network Management Predic-
tion system from looking ahead once the system has predicted up to the lookahead time. This
helps maintain synchronization and saves processing and bandwidth since it is not necessary to
continue the prediction process indefinitely into the future, especially since the prediction proc-
ess is assumed to be less accurate the further it predicts into the future.

Distributed simulation mechanisms require Global Virtual Time in order to determine when
to commit events. This is because the simulation cannot rollback beyond Global Virtual Time. In
Active Virtual Network Management Prediction, event results are assumed to be cached before
real time reaches the Local Virtual Time of a Logical Process. The only purpose for Global Vir-
tual Time in Active Virtual Network Management Prediction is to act as a throttle on computa-
tion into the future. Thus, the complexity and overhead required to accurately determine the
Global Virtual Time is unnecessary in Active Virtual Network Management Prediction. In the
Active Virtual Network Management Prediction system, while the Local Virtual Time of a Logi-
cal Process is greater than t + A, the Logical Process does not process virtual messages.

The Global Virtual Time update request packets have the intelligence to travel only to those
logical processes most likely to contain a global minimum. An example is shown in Figure 7.1.

GVT Initiator

Active GVT Request

Local Min 12 Dropped

Active GVT Response

Local Min 12

Figure 7.1. Active Global Virtual Time Calculation Overview.

The Active Request packet notices that the logical process with a Global Virtual Time of 20
is greater than the last logical process that the Active Request packet passed through and thus
destroys itself. This limits the amount of unnecessary traffic and computation. The nodes that
receive the Active Request packet forward the result to the initiator. As the Active Response
packets return to the initiator, the last packet is maintained in the cache of each logical process. If

98

the value of the Active Response packet is greater than or equal to the value in the cache, then
the packet is dropped. Again, this reduces the amount of traffic and computation that must be
performed.

7.3 REAL MESSAGE OPTIMIZATION

Real messages are only used in the Active Virtual Network Management Prediction algo-
rithm as a verification that a prediction has been accurate within a given tolerance. The driving
process need not send a real message if the virtual messages are within the lowest tolerance in
the path of a virtual message. This requires that the driving process have knowledge of the toler-
ance of the destination process. The driving process has copies of previously sent messages in its
send queue. If real messages are only sent when an out-of-tolerance condition occurs, then the
bandwidth can be reduced by up to 50%. Figure 7.2 compares the bandwidth with and without
the real message optimization.

2.2

5 2 m
a.
2 z
5 1.8

o
» 1.6

AVNMP Bandwidth Overhead

O
3
in

1.4

1.2 AVNMP w/o Real Msg Opt.
AVNMP with Real Msg Opt.

0.2 0.4 0.6

E[Y]

0.8

Figure 7.2. Bandwidth Overhead Reduction.

The performance analysis of Active Virtual Network Management Prediction has quantified
the costs versus the speedup provided by Active Virtual Network Management Prediction. The
costs have been identified as the additional bandwidth and possible wasted resources due to inac-
curate prediction. Since the Active Virtual Network Management Prediction algorithm combines
optimistic synchronization with a real time system, the probability of non-causal message order
was determined. A new approach using Petri-Nets and synchronic distance determined the likeli-
hood of out-of-order virtual messages. The speedup was defined as the expected rate of change

99

of the Local Virtual Time with respect to real time. The speedup was quantified and a sensitivity
analysis revealed the parameters most affecting speedup. The bandwidth was quantified based on
the probability of rollback and the expected rollback rate of the Active Virtual Network Man-
agement Prediction system. A general analysis of the accumulated error of the Active Virtual
Network Management Prediction system followed with the probability of error in the active net-
work. Finally, the consideration of alternative future events, the relevance of Global Virtual
Time, and a bandwidth technique were discussed.

Active networks enable an exciting new paradigm for communications. This paradigm fa-
cilitates the use of data transmission and computation in ways unimaginable in legacy networks.
Hopefully the information provided in this report will give the reader a running start in under-
standing this new technology and generate new ideas in the reader's mind for novel applications
of this technology.

7.4 COMPLEXITY IN SELF-PREDICTIVE SYSTEMS

A fascinating perspective on the topic of self-predictive systems is found in Gödel, Escher,
and Bach: An Eternal Golden Braid, which is a wonderful look at the nature of Human and Arti-
ficial Intelligence. A central point in (Hofstadter, 1980) is that intelligence is a Tangled Hierar-
chy, illustrated in the famous Escher drawing of two hands - each drawing the other. A hand
performing the act of drawing is expected to be a level above the hand being drawn. When the
two levels are folded together, a Tangled Hierarchy results, an idea which is expressed much
more elegantly in (Hofstadter, 1980). Active Virtual Network Management Prediction as pre-
sented in this work is a Tangled Hierarchy on several levels: simulation-reality and also present-
future time. One of the hands in the Escher drawing represents prediction based on simulation
and the other represents reality, each modifying the other in the Active Virtual Network Man-
agement Prediction algorithm. However, there is a much deeper mathematical relationship pres-
ent in this algorithm that relates to Gödel's Theorem. In a nutshell, Gödel's theorem states that
no formal system can describe itself with complete fidelity. This places a formidable limitation
on the ability of mathematics to describe itself. The implication for artificial intelligence is that
the human mind can never fully understand its own operation, or possibly that if one could fully
understand how one thinks while one is thinking, then one would cease to "be." In the much
more mundane Active Virtual Network Management Prediction algorithm, a system is in some
sense attempting to use itself to predict its own future state with the goal of perfect fidelity. If
Gödel's Theorem applies, then perfect fidelity is an impossible goal. However, by allowing for a
given tolerance in the amount of error and assuming accuracy in prediction which increases as
real time approaches the actual time of an event, this study assumes that a useful self-predictive
system can be implemented.

In the course of efforts to fully utilize the power of active networks to build a self-managing
communications network, the nature of entanglement and the relationship between modeling and
communication becomes of utmost importance. This section provides a general overview of the
goal that Active Virtual Network Management Prediction is trying to accomplish as well as its
evolution as resources increase; that is, how does such a self-predictive system behave as proc-
essing and bandwidth become ever larger and more powerful. An attempt is made to identify
new theories required to understand such highly self-predictive systems.

100

7.4.1 Near-Infinite Resources
Now, imagine stepping across a discontinuity into a world where computing power, band-

width, and computational ubiquity are nearly infinite. Our vision focuses on effects that near-
perfect self-prediction would have upon such a world. First we would have near-perfect optimi-
zation of resources since local minima could be pushed far into the horizon. Second, currently
wasted effort could be avoided, since the outcome of any action could be determined with very
precise limits. Critical missing elements are a theory and applications involving highly predictive
systems and components. Further study is needed to explore the exciting new world of near-
perfect self-prediction and the relationship between highly predictive systems and communica-
tions in particular. Figure 7.3 shows an abstract view of computers embedded within almost all
devices. Current engineering organizes computing devices in such a way as to optimize commu-
nications performance. In our hypothetical world of near-perfect predictive capabilities, direct
communication is less important and, in many cases, no longer required, as discussed later. In-
stead, computational organization is based on forming systems or islands of near-perfect self-
prediction. As shown in Figure 7.4, self-predictive capability is used to enhance the performance
of the system, which in turn improves the predictive capability, which again improves the per-
formance of the system, ad infinitum, driving the error towards zero.

Embedded processors with
predictive capability optimize
performance of machines
and their environments

Wireless communication
between sensors

- Groups of embedded
computers form
islands of near-
perfect prediction —

Personal computers observe and
predict the information use of an
individual to:
¥ optimize the performance of an

individual within a particular
information environment

¥ elkaerrtJy gather and sort information
¥ locate new information sources

based on sources requested and
predicted

Figure 7.3. Computational organization is based on forming systems or islands of near-
perfect self-prediction.

101

Better T~j
Performance />^N

Better
Prediction

Figure 7.4. This predictive capability is used to drive the error toward zero.

Why do we assume rather than perfect prediction and why do we assume islands rather than
perfect prediction everywhere? Clearly, perfect prediction everywhere would take us into a de-
terministic world where the final outcome of all choices would be known to everyone and the
optimal choice could be determined in all cases. In this project it is assumed that limits, however
small, exist, such as lack of knowledge about quantum state or of the depths of space. In order to
study near-perfect self-predictive islands, the characteristics of such islands need to be identified.
It would appear that closed self-predictive islands would be the easiest to understand. The scope
of closed self-predictive islands includes all driving forces acting upon the system. Imagine that
one has full knowledge of the state of a room full of ping-pong balls and their elasticity. This in-
formation can be used to predict the position of the balls at any point in time. However, one is
external to the room. The goal is for the balls to predict their own behavior as illustrated in the
inner sphere of Figure 7.5. If elasticity represents the dynamics of communication endpoint enti-
ties A and B, and movement of the ping-pong balls represents communication, then any ex-
change of information between A and B is unnecessary since it can be perfectly predicted.
Instead of transmitting messages between A and B, an initial transmission of the dynamics of A
and B is transmitted to each other, perhaps as active packets within an active network environ-
ment. Thus a near-perfect self-predictive island is turned inward upon itself as shown in Figure
7.6. In an active network environment, an executable model can be included within an active
packet. When the active packet reaches the target intermediate device, the load model provides
virtual input messages to the logical process and the payload of the virtual message is passed to
the actual device.

102

Islands of near-perfect
prediction will be possible
in the future with ubiquitous
computing ,

••'' Current computing
limits only allow for less
predictive open systems

Open System —
less predictive

Closed System — more predictive

Figure 7.5. Self-predictive islands can improve prediction fidelity by expanding to incorpo-
rate more elements.

Figure 7.6. Direct communication between A and B is unnecessary as the dynamics of A
can be transmitted to B, allowing B to interact with a near-perfect model of A.

Open self-predictive islands will contain inaccuracies in prediction because, by definition,
open self-predictive islands include the effects of unknown driving forces upon entities within
the of the system. Figure 7.5 shows a force (F.) acting on the inner system. F, is external to the

103

inner system because it is not included within the system itself or in the virtual messages passed
into the system. The system could become closed by either enlarging the scope to include the
driving forces within the system, as shown in the figure, or by accepting a level of inaccuracy in
the system. Thus we can imagine many initial points of near-perfect self-predictive islands, each
attempting to improve prediction fidelity by expanding to incorporate more elements. These are
the islands of near-perfect self-prediction.

Recursion is a recurring theme in this work. For example, assume that the inner near-perfect
self-predictive island in Figure 7.5 is a wireless mobile communications system and F, is the
weather. Now assume that ubiquitous computing can be used to include weather observation and
prediction, for example, computers within planes, cars, spacecraft, etc. The heat from the cir-
cuitry of the wireless system, even though negligible, could have an impact on the weather. This
is known as the butterfly effect in Chaos Theory. In recent years the study of chaotic nonlinear
dynamical systems has led to diverse applications where chaotic motions are described and con-
trolled into some desirable motion. Chaotic systems are sensitive to initial condition. Researchers
now realize that this sensitivity can also facilitate control of system motion. For example, in
communications, chaotic lasers have been controlled, as have chaotic diode resonator circuits
(Aronson et al., 1994, DiBernardo, 1996). Hence, studying the effects of external forces control-
ling a chaotic system has become a very important goal and should be a subject for research. By
allowing for a given tolerance in the amount of error and assuming accuracy in prediction that
increases as real time approaches the actual time of an event, this study assumes that a useful
near-perfect self-predictive island can be implemented. The Active Virtual Network Manage-
ment Prediction project attempts to embed predictive capability within an active network using a
self-adjusting Time Warp based mechanism for prediction propagation. This self-adjusting prop-
erty has been found to be useful in prediction and is referred to as autoanaplasis. In addition to
autoanaplasis, it is well known that such systems sometimes exhibit super-criticality, faster than
critical path execution. However, due to limited and non-ubiquitous computational power in cur-
rent technology, prediction inaccuracy causes rollbacks to occur. In a world of near-infinite
bandwidth and computing power, the cost of a rollback to a "safe" time becomes infinitesimal.
This is one of the many new ideas this project will explore involving the relationship between
bandwidth, computing power, and prediction. Given near-infinite bandwidth, the system state
can be propagated nearly instantaneously. With nearly infinite and ubiquitous computing, driving
processes can be developed with near-perfect accuracy. Let us define near-perfect accuracy of
our self-adjusting Time Warp based system in the presence of rollback as the characteristic that a
predicted state value (Vv) approaches the real value (Vr) as t approaches GVT(r,) very quickly,
where GVT(t{) is the Global Virtual Time of the system at time ty Explicitly, this is, Vs > 0,38 >
0 s.t. \fit) -fiGVT{tJ)\ < £^ 0 < |GVT(r,) - t\ where fit) = Vr and/(GVT(f,)) = Vv. fit) is the pre-
diction function. The effect of should not be ignored. These values are described in more detail
in Section5.

7.4.2 Performance Of Near-Perfect Self-Predictive Islands

One focus of study is on the interfaces between systems with various levels of predictive ca-
pability. The self-predictive islands formed in Figure 7.3 have various degrees of prediction ca-
pability. Our recent theoretical results from the Active Virtual Network Management project
indicate that self-predictive islands exhibit high degrees of performance when prediction is accu-
rate, but are brittle when the tolerance for inaccuracy is reached. With respect to network per-
formance as enhanced with Active Virtual Network Management Prediction, systems with little

104

or no prediction capability appear to be ductile, as they are much better able to tolerate prediction
inaccuracy, as shown in Figure 7.8. In other words, performance is moderate, but there are no
sudden degradations in performance. This compares favorably to a system with a large looka-
head and sudden, near catastrophic degradations in performance.

Thus an obvious question arises as to what is the optimal grouping of predictive components
within a system. What happens when the slope shown in Figure 7.8 becomes nearly verticd? The
lookahead into the future is tremendously large in some self-predictive islands and smaller in
others If the lookahead is small in a self-predictive island that feeds into a large lookahead sys-
tem then large rollbacks are likely to occur. One focus of study is on the interfaces between
systems with various levels of predictive capability and the associated index of refraction of
performance through the interfaces between islands of near-perfect self-prediction.

Brittle behavior of near-perfect self-predictive islands is shown by point D along curve Ph in
Figure 7 9 P is the performance curve for a high-performance system with brittle characteris-
tics- P is a lower-performance system with ductile characteristics. Clearly, the slope from point
D along curve Ph is much steeper than that of point E along curve Pr The steep decline of per-
formance along Ph can be caused by input parameters that exceed a specified tolerance, or by en-
vironmental conditions that exceed specified operating boundaries.

Materials Science Near-Perfect Prediction Systems

Brittle Behavior Sudden steep decline in performance

Ductile Behavior Graceful degradation in performance

Stress Amount parameter exceeds its tolerance

Toughness System robustness

Hardness Level of performance within tolerance

Ductility Level of performance outside of tolerance

Plastic Strain Degradation from which system cannot recover

Elastic Strain Degradation from which system can recover

Brittleness Ratio of hardness over ductility

Deformation Degradation in performance

Young's Modulus Amount tolerance is exceeded over degradation

Figure 7.7. Terms Borrowed from Materials Science.

o r

Little
Prediction

Tolerance (T)

Figure 7.8. Performance of Self-predictive Islands.

105

Performance
Brittle

X Input
Tolerance (T)

Figure 7.9. A Brittle vs. Ductile System.

Consider a system whose self-predictive islands exhibit various degrees of ductility as de-
fined above. Just as adding impurities to a pure metal causes it to become stronger but more brit-
tle, the addition of more efficient but also more sensitive components to a system, such as a near-
perfect self-prediction system, causes the system to increase performance within its operating
range, but become less ductile. How do the effects of ductility propagate among the self-
predictive islands to influence the ductility of the entire system? Assume the performance re-
sponse curve is known for each self-predictive island and that the output from one component
feeds into the input of the next component as shown in Figure 7.10. The self-predictive islands
are labeled 5n and the performance curves as a function of tolerance for error are shown in the
illustration immediately above each island. More fundamental research is needed to carry for-
ward this analogy and deliver a theory and models of the relationships among computing, com-
munications, and near-perfect self-prediction.

7.5 SUMMARY

The primary conclusion is that further research is required to understand the nature of entan-
glement, causality, and the relationship between modeling and communications. For example,
Active Network Management Prediction uses a model within a network to enhance the network
performance to improve the model's own performance, which thus improves the network's per-
formance thus enhancing the model's performance ad infinitum as shown in Figure 7.4. Fur-
thermore, the Active Virtual Network Management Prediction mechanism uses a Time Warp-
like method to ensure causality, yet there is something non-causal about the way Active Virtual
Network Management Prediction uses future events to optimize current behavior. This entan-
glement issue resonates with physicists and those studying the nature of agent autonomy as evi-
dent in numerous conferences. Clearly, this needs to be explored in a much deeper manner. Also,
formation of islands of near-perfect self-prediction and the need to study the interfaces between
those islands was discussed. The idea of wrappers and integration spaces as introduced in
(Christopher Landauer and Kirstie L. Bellman, 1996) is likely to provide insight into bringing
together complex system components in a self-organizing manner. Another suggestion for the
study of predictive interfaces is in a tolerance interaction space (Landauer and Bellman, 1996).

106

Prediction with
some amount

of error

The prediction
is determined
by the tolerance
to error

Optimum performance
(minimum error) can be
obtained by adjusting the
individual performance
curves of the systems
components

Figure 7.10. Brittle Subsystem Components.

107

Appendix : AVNMP SNMP MIB

A diagram of the Active Virtual Network Management Prediction SNMP Management In-
formation Base is shown in Figure 7.A.I. This diagram is the authors' interpretation of a Case
Diagram, showing the relationship between the primary MIB objects. Many of the MIB objects
are for experimental purposes; only the necessary and sufficient SNMP objects based on the
authors' experience are included in the Case Diagram. In Figure 7.A.1, the AVNMP process, not
shown, can be thought of as being on the top of the figure and the network communication
mechanism (not shown) on the bottom of the figure. The vertical arrows illustrate the main path
of information flow between the AVNMP process and the underlying network. Lines that cross
the main flows indicate counters that accumulate information as each packet transitions between
the network and the AVNMP process. Arrows that extend from the main flow are counters where
packets are removed from the main flow. The complete AVNMP version 1.1 MTB follows and is
included on the CD inmib-avnmp.txt.

AVNMP-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, experimental,
Counter32, TimeTicks
FROM SNMPv2-SMI
DisplayString

FROM SNMPv2-TC;

avnmpMIB MODULE-IDENTITY 10
LAST-UPDATED "9801010000Z"
ORGANIZATION "GE CRD"
CONTACT-INFO

"Steve Bush bushsf@crd.ge.com"
DESCRIPTION

"Experimental MIB modules for the Active Virtual Network
Management Prediction (AVNMP) system."

::= { experimental active(75) 4 }

~ Logical Process Table 20

IP OBJECT IDENTIFIER ::= { avnmpMIB 1 }

lPTable OBJECT-TYPE
SYNTAX SEQUENCE OF LPEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION 30

"Table of AVNMP LP information."
::= { IP 1 }

IPEntry OBJECT-TYPE
SYNTAX LPEntry
MAX-ACCESS not-accessible
STATUS current

108

DESCRIPTION
"Table of AVNMP LP information

INDEX { lPIndex }
::= { IPTable 1 }

ntry ::= SEQUENCE {
lPIndex INTEGER,
1PID DisplayString,
1PLVT INTEGER,
lPQRSize INTEGER,
lPQSSize INTEGER,
lPCausalityRollbacks INTEGER,
lPToleranceRoIlbacks INTEGER,
IPSQSize INTEGER,
lPTolerance INTEGER,
1PGVT INTEGER,
lPLookAhead INTEGER,
lPGvtUpdate INTEGER,
IPStepSize INTEGER,
lPReal INTEGER,
lPVirtual INTEGER,
lPNumPkts INTEGER,
IPNumAnti INTEGER,
IPPredAcc DisplayString,
lPPropX DisplayString,
lPPropY DisplayString,
IPETask DisplayString,
IPETrb DisplayString,
lPVmRate DisplayString,
lPReRate DisplayString,
IPSpeedup DisplayString,
lPLookahead DisplayString,
lPNumNoState INTEGER,
IPStatePred DisplayString,
lPPktPred DisplayString,
lPTdiff DisplayString,
IPStateErroi DisplayString,
lPUptime TimeTicks

40

50

60

70

lPIndex OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS not-accessible 80
STATUS current
DESCRIPTION

"The LP table index."
::= { IPEntry 1 }

1PID OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION 90

"The LP identifier."
::={ IPEntry 2 }

1PLVT OBJECT-TYPE

109

SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the LP Local Virtual Time."
::= { IPEntry 3 } 100

lPQRSize OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the LP Receive Queue Size."
::={ IPEntry 4 }

lPQSSize OBJECT-TYPE 110
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the LP send queue size."
::= { IPEntry 5 }

lPCausalityRollbacks OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only 120
STATUS current
DESCRIPTION

"This is the number of rollbacks this LP has suffered."
::= { IPEntry 6 }

lPToleranceRollbacks OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION 130

"This is the number of rollbacks this LP has suffered."
::={ IPEntry 7 }

IPSQSize OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the LP state queue size."
::= { IPEntry 8 } 140

lPTolerance OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the allowable deviation between process's
predicted state and the actual state."
::= { IPEntry 9 }

150

110

IPGVT OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is this system's notion of Global Virtual Time."
::= { IPEntry 10 }

lPLookAhead OBJECT-TYPE
SYNTAX INTEGER (0..2147483647) 160

MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is this system's maximum time into which it can
predict."
::={ IPEntry 11 }

lPGvtUpdate OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only 170

STATUS current
DESCRIPTION

"This is the GVT update rate."
::= { IPEntry 12 }

IPStepSize OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION 18°

"This is the lookahead (Delta) in milliseconds for each
virtual message as generated from the driving process."
::= { IPEntry 13 }

lPReal OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the total number of real messages received." 190
::= { IPEntry 14 }

lPVirtual OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the total number of virtual messages
received."
::= { IPEntry 15 } 200

lPNumPkts OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

111

"This is the total number of all AVNMP packets
received."
::= { IPEntry 16 }

210
lPNumAnti OBJECT-TYPE

SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the total number of Anti-Messages transmitted
by this Logical Process."
::= { IPEntry 17 }

IPPredAcc OBJECT-TYPE 220
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the prediction accuracy based upon time
weighted average of the difference between predicted and real
values."
::= { IPEntry 18 }

LPPropX OBJECT-TYPE 230
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the proportion of out-of-order messages
received at this Logical Process."
::= { IPEntry 19 }

LPPropY OBJECT-TYPE
SYNTAX DisplayString 240
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the proportion of out-of-tolerance messages
received at this Logical Process."
::= { IPEntry 20 }

IPETask OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only 250
STATUS current
DESCRIPTION

"This is the expected task execution wallclock time for this
Logical Process."
::={ IPEntry 21 }

IPErb OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION 260

"This is the expected wallclock time spent performing a
rollback for this Logical Process."

112

::= { IPEntry 22 }

lPVmRate OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION 270

"This is the rate at which virtual messages were
processed by this Logical Process."
::={ IPEntry 23 }

lPReRate OBJECT-TYPE
SYNTAX DisplayString

MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the time until next virtual message." 280
::={ IPEntry 24 }

IPSpeedup OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the speedup, ratio of virtual time to wallclock time,
of this logical process."
::= {IPEntry 25 } 290

IPLookahead OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the expected lookahead in milliseconds of this
Logical Process."
::={ IPEntry 26} 1 y 300

lPNumNoState OBJECT-TYPE
SYNTAX INTEGER (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the number of times there was no valid state to
restore when needed by a rollback or when required to check
prediction accuracy."
::={ IPEntry 27 } 1 310

IPStatePred OBJECT-TYPE
SYNTAX DisplayString

MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the cached value of the state at the nearest
time to the current time."
::= { IPEntry 28 }

IPPktPred OBJECT-TYPE 320

113

SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"This is the predicted value in a virtual message."
::={ lPEntry29 }

IPTdiff OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only 330
STATUS current
DESCRIPTION

"This is the time difference between a predicted and an
actual value."
::= { IPEntry 30 }

IPStateError OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current 340
DESCRIPTION

"This is the difference between the contents of an application
value and the state value as seen within the virtual message."
::={ IPEntry 31 }

lPUptime OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION 350

"This is the time in milliseconds that AVNMP has been
running on this node."
::= { IPEntry 32 }

END

114

8

AVNMP EXPERIMENTAL VERIFICATION

This chapter discusses the experimental validation of the Active Virtual Network
Management Prediction Algorithm (AVNMP). The general operation is illustrated in the
following four graphs. The bold red curves emphasize expected trends in operation. Figure 8.1
shows the reduction in tolerance versus time that is pre-programmed into each Logical Process.
This is done in order to create a greater demand over time for accuracy and thus create a
challenging validation of the AVNMP system under gradually increasing stress. In Figure 8.2 the
proportion of out-of-tolerance messages is shown as a function of wallclock time. As wallclock
time progresses, the tolerance is purposely reduced, causing a greater likelihood of messages
exceeding the tolerance. This is done in order to validate the performance of the system as stress,
in the form of greater demand for accuracy, is increased. Figure 8.3 shows the prediction error as
a function of wallclock time. This graph verifies that the system is producing more accurate
predictions as the demand for accuracy increases. However, Figure 8.4 shows the Lookahead
decreasing versus wallclock time. The demand for greater accuracy has reduced the distance into
the future that the system can predict. Finally, in Figure 8.5, the speedup, which is the virtual
time versus wallclock time of the real system, is shown as a function of wallclock time. The
speedup is reduced as the demand for accuracy is increased. These graphs serve to show the
salient features of AVNMP operation; more detailed results under various conditions follow in
this chapter. In the sections that follow, the network management framework of which AVNMP
is a part is explained in order to describe the system and its effect upon data collection. Then a
comparison and contrast with the analytical results is presented for the case of two different
topological AVNMP configurations.

115

Tblerance

500

Eredicticn Accuracy

400

300

200

100

Wallclock: (irS)
500000 lxlO6 1.5 x10s 2xl06 2.5 xlO6 3xlOe

Figure 8.1 Tolerance Setting Decreases as Wallclock Increases Thus Demanding Greater
Accuracy...

ProportionOut-of -Tolerance Performance

1

0.8

0.6

0.4

0.2

Wallclock mS
ß -I..T o6 1 C..-1 n6 -1..1 06 500000 lxlO6 1.5x10" 2xlOb 2.5x10" 3x10'

Figure 8.2 ...This Causes the Proportion of Out-of-Tolerance Messages to Increase Due to
Greater Demand for Accuracy.

116

Prediction Error

200

150

Accuracy

100

Wallclock mS

500000 lxlo
6 1.5x10* 2x10° 2.5x10* 3x10*

Figure 8.3 ...Predictions Become More Accurate.

ExpectedLookahead mS Performance

200000

150000

100000

50000

Wallclock mS

500000 1x10° 1.5xl06 2xl06 2.5xl06 3xl06

Figure 8.4 ...At the Expense of Lookahead.

117

Speedup Performance

Wallclock mS
500000 ixio6 1.5xl06 2xl06 2.5xl06 3xl06

Figure 8.5 ...and Speedup.

8.1 Experimental Environment and Data Collection

The experimental performance data collection takes place in a network with the topology
shown in Figure 8.6. The boxes represent active nodes, the lines represent links, and the
numbers identify ports. The nodes are Sun Spares running the Solaris operating system and the
Magician active network execution environment. Figure 8.7 illustrates the framework that is
being used to instrument the system with management capability. SmallState is used as a
rendezvous location for management between the active SNMP agents and the management
clients. A Magician Active Application implemented as a Java class interface collects
management from other Magician applications and from the internal Magician Execution
Environment and provides an SNMP agent interface.

118

AH-1 ABONE

Internet

AH-2

AN-3

3325'

Active Node

3325

3320
/

Active Node

Active Node

AN-2

 3330

3320

Active Node

Figure 8.6. The GE CRD Active Network Testbed.

AA
Probe

AA
AVNMP

AA
Mgt. Service 1

/ EE \

Management
State (smallstate)

EE NodeOS AA

£ /

- /

Q- /
Q /
3 /

a. /

NodeOS Q.

a.
a

\ D-
\ "J
\ Z

M <
UJ / ^-
z / .—^^ ETH | IP | ATM

Figure 8.7. Overview of the Management Framework.

119

Figure 8.8 shows the co-existence of the AVNMP components and the application. The
AVNMP Driving Processes gather prediction information from the actual application through the
management system. In this case, the information required is the total number of packets
generated and the current time. The prediction is based on a simple curve-fitting algorithm. The
predicted value is placed into the MTB. The prediction is also propagated to the next hop node.
At this node the Physical Process forwards the virtual packet, and the Logical Process provides
the virtual time environment in which this takes place. This includes handling rollback when
virtual messages arrive out-of-order or real messages are out-of-tolerance with predicted values.
The predicted value is again placed within the MTB and the process continues along each node in
the path of the data stream.

Attributes to be
Predicted, e.g. CPU
Bandwidth, etc...

Figure 8.8. Overview of the AVNMP Architecture.

Figure 8.9 shows the AVNMP system in more detail. The active packet contents are
illustrated along with the AVNMP components in a Driving Process and Logical Process. The
details of the AVNMP system have been described in detail in previous chapters. The important
point to note in these figures is that the AVNMP State Queue provides the predicted values for
the framework MLB. Because nodes each have their own notion of virtual time and because
rollback can occur, the predicted values in the MTB can change. The Management Interface in
Figure 8.9 interfaces with internal Magician Execution Environment management data such as
CPU utilization as well as Magician application level management information and AVNMP.

120

EE

4=71
Avnmp Packet
Real Time (RT)
Send Time (TS)
Receive Time (TR)
Anti-toggle (A)
Sender (S)
Receiver (R)
Message (M)
compPred()

Management Interface
CPU, Load, Queue Size

~^^~

Figure 8.9. The AVNMP Management Interface.

Figure 8.10 provides more detail on the management framework used for validation of the
AVNMP algorithm. The Magician active application is provided with a Java Interface that
allows implementation of SNMP-like calls to collect and set management values within an
application. The SNMP Agent in Figure 8.10 is a separate Magician application that implements
the SNMP instrumentation via SmallState (InjectSnmp). Management clients can access the node
as though it was a standard SNMP manageable system. This approach was chosen because it
appeared to require the least amount of overhead and provided easy access to extant SNMP tools.
Note that the communication between the active application and the agent occurs via message
passing. Thus the application and the agent need not reside on the same node and the agent can
easily °be mobile. The SNMP Management Information Base (MIB) can be conceptualized as
residing in the SmallState illustrated in the figure.

Active Application

Agent/Client

^

AgentTable
Interface

Get/Set

SNMP Agent

SmallState

f\ AgentTable
Interface

Port
161

F^

/-A
W

Non Active
Application

SNMP Client
Port
161

Figure 8.10. AVNMP Architecture in More Detail.

8.2 The Mathematica AVNMP Package

This section presents the development of the relationships used in the. analysis of AVNMP. The
Mathematica software package has been instrumented with the ability to collect, graph, and
analyze the results of the AVNMP experiments. The Mathematica code is interspersed along
with the graphs and analytical results and discussion that follows. Mathematica cells appear in

121

the outlined sections that follow, input code is boldface, and output is in computer typeface font
near the bottom of the cells. Equation 1 shows the Mathematica packages and settings used to
generate the graphs and equations throughout this document.

Needs["Avnmp*"];
Needs["DataRetrieval*"];
Needs["Graphics'MultipleListPlot,"]
Needs["Statistics*DescriptiveStatisticsv"]
<<"/home/bushsf /mma/GnuDisplay.m"
<<StatisticslDataManipulation,

<<Graphics ^Graphics *
Off[General::spelll]
dir="/home/bushsf/projects/an/snmp/avnmp_stage/10_16_linear/";

Equation 1 Mathematica Packages Used to Gather and Manipulate Experimental Data.

Equation 2 defines the time dimension in milliseconds. Equation 3 defines the Lookahead, X,
which is the maximum distance into the future the system is allowed to predict. If a Logical
Process progresses beyond X, it will delay. Equation 4 defines the rate at which the Driving
Process generates virtual messages. Equation 5 defines the step size of each virtual message
generated by the Driving Processes. Each virtual message will have a timestamp that increments
by the amount in Equation 5. Equation 6 is the expected task execution time per virtual message.
It is obtained by measurement from data collected during the experiment from the Logical
Process. Expected Task execution time is a management object in the AVNMP MIB, along with
most of the remaining parameters. Equation 7 is the expected amount of time required to perform
a rollback. It is also obtained by measurement from the experimental data from the Logical
Processes. Expected Task rollback time is also an AVNMP MIB object. Equation 8 is the
expected number of out-of-order rollbacks collected from MIB data during experimental runs.
Equation 9 is the mean number of out-of-tolerance rollbacks collected from the experimental
runs. The expected number of out-of-tolerance rollbacks is also an AVNMP MIB object.

mS = l./lOOO.s;

Equation 2 Defining the Time Dimension.

A.=200000. mS

200 . s

Equation 3 Setting the Maximum Lookahead Distance.

Avm=(0.5 vM)/(1000. mS)

0.5 vM

Equation 4 Setting the Virtual Message Generation Rate.

122

\ Avm = 20000. mS /vM
20 • s

vM

Equation 5 Setting the Step Size for Each Virtual Message.

1 taskx=Mean[Flatten[getData[dir, "lPETask.AN-1"]]] zaS /vM |
4.1624 s

vM
Equation 6 Computing the Mean Task Execution Time.

1 xrb=Mean[Flatten[getData[dir,
14.6617 s

vM

■lPETrb.AN-l"]]] mS / vM |

Equation 7 Computing the Mean Rollback Time.

sc=Mean[Flatten[getData[dir, nlPPropX.AN-ln]]] I
0.0393805

Equation 8 Computing the Mean Number of Out-of-Order Messages.

y=Mean[Flatten[getData[dir, "lPPropY.AN-ln]]] I

0.370916

Equation 9 Computing the Mean Number of Out-of-Tolerance Messages.

In Equation 10 the initial tolerance is set at the given packets per second. This means that a
predicted value that differs from the actual value by the above value of packets per second is
considered a good prediction. The tolerance is reduced after every time period as specified in
Equation 11. The tolerance is reduced in scale by the amount shown in Equation 12 every time
period in order to test the system under stress. Thus, the tolerance range for prediction error is
narrowed as time progresses as shown in Figure 8.. Every five minutes half reduces the
tolerance. This increases the likelihood of out-of-tolerance rollbacks and slows the rate of
progress of the Local Virtual Time.

123

I initTol=1000.; [

Equation 10 Setting the Initial Tolerance.

I runMinutes=5.; |

Equation 11 Setting the Number of Minutes to Run for Each Tolerance.

| redTol=.5; |

Equation 12 Scale the Tolerance by this Amount for Each Run.

8.2.1 Prediction Rate

The derivation of the equations was discussed in previous chapters. In this section a brief sketch
of the Mathematica version of those equations is shown because these equations are used in the
experimental validation which follows. The rate at which AVNMP can predict is based upon
Equation 13. The rate is plotted in Figure 8. using values from an actual execution. This shows
the effect that out-of-order messages will have on the performance. In this case, it would take
more than 70 percent of the total number of messages being received out-of-order to cause
AVNMP to slow down to the point of near real-time speed.

S[lvm_, Dvm_# ttask_, trb_, X_, Y_] :=
lvm (Dvm - ttask + trb) X - (Dvm - 1/lvm) Y)

Equation 13 AVNMP Speed.

Plot[S[Xvm, Avm, taskr, Trb, x, Y], {Y, .1,1.},
AxesLabel -> {"Out-of-Tolerance Messages", ^Speedup?}]

124

0.2 0.4 0.6 -O.ÖNJ
Out- of -Tolerance Messages

Figure 8.11. AVNMP Speed as a Function of Out-of-Order Messages.

The Local Virtual Time (LVT) is derived in Equation 14. LVT is a function of S, t, and C where S
is the prediction rate from Equation 13, t is the wallclock time, and C is a constant that represents
the amount of time the actual system has been in operation before AVNMP is started. LVT is
plotted in Figure 8.12 as a function of wallclock time and the proportion of out-of-tolerance
messages. Fewer out-of-tolerance messages result in a greater predictive distance into the future.
Equation 15 defines Lookahead that is graphed in Figure 8.13. Lookahead increases indefinitely
with Wallclock time because maximum Lookahead has not incorporated into the equation yet.

LVT[lvm_, Dvm_, Spar_, ttask_, trb_, X_, Y_, t_, C_] :=
S[lvm, Dvm, ttask, trb, X, Y]t + C

Equation 14 The Equation for Local Virtual Time.

PlotSDtLVTtX-vm, A-wm, 1.0, taskr, xrb, x, Y, t, 0.], {Y, 0., 1.},

{t, :;b//:100|}>_:JtaBBSl^^

125

100

Figure 8.12. AVNMP Performance as a Function of Out-of-Tolerance Message Proportion.

IiA[lvm_, Dvm_, Spar_, ttask_, trb_, X_, Y_, t_, C_] : =
(LVT[lvm, Dvm, Spar, ttask, trb, X, Y, t, C] - 1.) t + C

Equation 15 Lookahead.

Plot3D[LA[Xvm, Avm, 1.0> taskx, xrb, x, Y, t, 0.], {Y, 0., 1.},
{t, 0., 100.}, AxesLabel -> {"Y", Mt", "LA"}]

126

//AoOv
/ •' A"^ * / y^ / ^^\/ /\

60000 \ ^^~^-^/V>
100

IA 40000 \ /3^~^'

20000 \ /r>yC. / />^y^vC^>/ 80

OY/*^/
60

0.2 40

0.4

0.6 20

Figure 8.13. Lookahead Performance.

Equation 16 defines an approximate relationship between the probability of a message being out
of tolerance given the proportion of out-of-order message proportion and the time to reach that
proportion of out-of-tolerance messages. Note that we are assuming exponential amount of error.
A sample is graphed in Figure 8.14. The inverse relationship is defined in Equation 17 where the
variable s is the amount of time into the future at which the event occurs. A sample graphed in
Figure 8.15. The proportion of out-of-order messages is calculated given the amount of
Lookahead and the tolerance and assuming an error exponential in the amount of time into the
future the prediction occurs.

XrwYtYj TJ
-(■

, Cfcs[45. Degree] lcg[Y] I

Equation 16 Probability of Out-of-Tolerance Messages.

127

Plot[InvY[Y, 1.], {Y, 0., 1.}, AxesLabel -> {"Y", "InvY"}]

300

250

200 [

150

100

50

o.2 o.4 o.6 o.8 i,'■'■■;■;

Figure 8.14. Tolerance Setting as a Function of Out-of-Tolerance Proportion.

Y[s_, T_] := Exp[-
1.

T]
(Cos [45. Degree] s)

Equation 17 Proportion of Out-of-Order Messages.

Plot[Y[s, 1.], {s, 0.1, 1.}, AxesLabel -> {"s", "Y"}]

0.2 0.4 0.6 0.8

Figure 8.15. Proportion of Out-of-Tolerance Messages as a Function of Distance into the
Future.

128

The function Gamma was explained in a previous chapter. Its Mathematica definition is shown
in Equation 18 and plotted in Figure 8.16. Gamma is used in the denominator of the exponent in
defining Pafier in Equation 19. Gamma increases with X and is independent of Wallclock time.

Ganmal[lvm

DvmSfcar-

Dwm_, Sfc»r_j ttask_y t3±>_, X_

l-±-\ - (ttask + trb) X - ttask v lw '

CJ

Dum^ar- -^=-+txb

Equation 18 Gamma.

Plot3D[Gammal[A.vms/vM, AvmvM/s, 1.0, taskxvM/s, xrbvM/s, X,
y, t, 0.], {X, .1, l.}f {t, 0., 10.}, AxesLabel-> {"X", "t", "Gairmal"}]

20.6

Gamtal
20.4

20.2

Figure 8.16 Gamma as a Function of Wallclock and Out-of-Order Message Proportion.

Equation 19 defines the probability of an event occurring before it was predicted to occur. In
other words, the prediction occurred late. The plot in Figure 8.17 shows that the probability of
late prediction appears to be very dependent upon the proportion of out-of-tolerance messages
and less so on out-of-order messages. This makes intuitive sense because out-of-order messages

129

can be corrected with small, quick rollbacks, while out-of-tolerance rollbacks require a rollback
to wallclock time.

Pafter [lvm_, Dvm_, Spar_, ttask_, trb_, X. _, Y_, t_, Q_, T_] : =

Exp[
- 1. / (InvY[Y, T] (Gammalflvm, Dvm , Spar, ttask, trb r X, Y, t, C] + C))]

Equation 19 The Probability of a Prediction Occuring Late.

Plot3D[Pafter[Xvms/vM, AvmvM/s, 1.0, taskrvM/s, xrbvM/s, X,
Y, 0., 0., 1.], {X, 0.0001, 1.}, {Y, .001, .99},

AxesLabel-> {"X", "Y", "Pafter"}]

Pafter 0.95

l

Figure 8.17. Probability of a Late Prediction as a Function of Out-of-Order and Out-of-
Tolerance Message Proportions.

Equation 20 is a more accurate definition of the rate at which prediction occurs. It is how much
faster LVT advances than wallclock time. This rate is graphed in Figure 8.18 as a function of

130

out-of-order and out-of-tolerance message proportions. Again, the out-of-tolerance messages
clearly have a larger impact on performance. Equation 21 defines the speedup of AVNMP over a
non-AVNMP process. Speedup is graphed in Figure 8.19.

Prate[lvm__, Dvm_/ Sgar_, ttask^ tx±u, X_, Y__, t_, CJ :=

lvm (Dvm£fcar - ttask - (ttask + ta±>) X- ((Dumber) - (~) +tab) Y)

Equation 20 The Rate at which AVNMP Predicts.

Plot3D[Prate[X.vms/vM, AvmvM/s, 1.0, taskr vM/s, xrbvM/s, X, Y, 0., 0.],
{X, 0.001, 1.}, {Y, 0.001,1.}, AxesLabel-> {"X", "Y", "Prats"}]

Prate

Figure 8.18. AVNMP Prediction Rate as a Function of Out-of-Order and Out-of-Tolerance
Messages.

131

Speedup[lvm_, Dvm_, Spar_, ttask_, trb_, X_, Y_, t_, C_, T_] :=
(1. - Pafter[lvm, Dvm, Spar, ttask, trb, X, Y, t, C, T]) +
Pafter[lvm, Dvm, Spar, ttask, trb, X, Y, t, C, T] Prate[lvm, Dvm, Spar,
ttask, trb, X, Y, t, C]

Equation 21 Speedup of AVNMP over the Wallclock Time of the Actual System.

Plot3D[Speedup[Xvms/vM, AvmvM/s, 1.0, taskr vM/s, xrbvM/s, X,
Y, 0., 0., 1.], {X, 0.0001, 1.}, {Y, 0., 1.},

AxesLabel - > { "X", "Y", " Speedup" }]

Spepdiip

Figure 8.19. Speedup of AVNMP as a Function of Out-of-Order and Out-of-Tolerance
Message Proportions.

Next consider the problem from a different perspective. Because AVNMP operates ahead of
wallclock time, perhaps the tasks can be given more time to execute without an apparent
slowdown in the system. In other words, one would like to know, given certain operating
parameters for AVNMP, what is the maximum wallclock time that a task can take to execute.
Equation 22 defines the time that a task can take to execute given all the other AVNMP

132

parameters. The resulting simplified relationship is shown in Equation 23 and graphed in Figure
8.20 and Figure 8.21. This shows that when LVT/t is high, a task can take a longer time to
execute and the system will complete in the same amount of time. In Figure 8.21, as LVT/t
increases, expected task execution time can take longer and the system will still compute the
result in the same amount of time given no out-of-tolerance or out-of-order rollbacks.

ttask[lvm_, Dvm_, Spar_,
ttask_, trb_, X_, Y_, t_, C_] := ttask /.
Solve[LVT == LVT[lvm, Dvm, Spar, ttask, trb, X, Y,

t, C], {ttask}][[1]]

Equation 22 Determining Maximum Task Time Given Other AVNMP Parameters.

ttask[Ivm_, DWIL, Spar_, ttask., ta±>_, XL, ..X> t_, Q_, IWTJ
-C + LVT - Itanlvmt + IvmttrtoX - tY + DwnlvmtY

Equation 23 Result of Solution to Equation 22 above.

Plot3D[ttask[0.03, 40.0, 1.0, 7.0, 1.0, .5,.5, t, 0., LVT],
{LVT, .0001, 100.}, {t, .0001, 100.},
AxesLabel-> {"LVT", "t", "Task Time"}]

133

Task Time 100

100

Figure 8.20. Maximum Task Time as a Function of Local Virtual Time and Wallclock
Time.

Plot[ttask[0.03, 40.0, 1.0, 7.0, 1.0, .5, .5, 0.0001, 0., LVT],
{LVT, .0001, 100.}, AxesLabel-> {"LVT", "Task Time"}]

134

Task Time

2x10

1.5x10' -

1x10

5x10

LVT

Figure 8.21. Maximum Task Time as a Function of Local Virtual Time.

8.2.2 Deriving Expected Lookahead

Equation 24 derives the wallclock time at the instant when the end of the sliding Lookahead
window is reached. This is the maximum allowed Lookahead. lvm is the virtual message input
rate, Dvm is the virtual message Lookahead, Spar is the speedup due to parallelism, ttask is the
task execution time, trb is the time to rollback, X is the proportion of out of order messages, Y is
the proportion of out of tolerance message, t is the current time, C is the fact that AVNMP begins
running C time units before real message start, and L is the maximum Lookahead time. Equation
25 is the wallclock time spent waiting while wallclock time catches up to the LVT. Equation 26 is
Lookahead at wallclock time t. In Equation 27, while wallclock is less than time th, Lookahead is
Prate. Equation 28 is the expected Lookahead of the system.

th[lvm_, Dvm_, Spar,, ttask_, trb_, X_, Y_, C_, L_]:= Module[{}, tH /.
Solve[Prate[lvm, Dvm, Spar, ttask, trb, X, Y, 0., C] tH == Dvm
Global1vM/Global's, {tH}][[l]]]

Equation 24 Wallclock Time When End of Sliding LookAhead Window is Reached.

tL[lvm_, Dvm_, Spar_, ttask_, trb_, X_, Y_, C_, L_]:= Module[{},(th[lvm, Dvm,
Spar, ttask, trb, X, Y, C, L] Global-s+ L)/Globales]

Equation 25 Time Waiting for Wallclock to Reach Local Virtual Time.

135

La[lvm_ ., Dvm_, Spar _, ttask_. trb_, X_, Y_, t_, C. _, L_] := Modul e[{Tl =
tL[lvm, Dvm, Spar, ttask. trb , X, Y, c, L]}, ([t, Tl]Prata[lvm, Dvm, Spar,
ttask, trb, X, Y,0. , C])]/; (Mod[t, tL[lvm, Dvm, Spar, ttask. trb, : K, Y,C,
L]] < = th[lvm. Dvm, Spar, ttask, trb , X r Y,C L])

Equation 26 Lookahead at a Given Wallclock Time (Part 1).

La[lvm_, Dvm_, Spar_, ttask_, trb_, X_, Y_, t_, C_, L_]:= Module[{Tl =
tL[lvm, Dvm, Spar, ttask, trb, X, Y, C, L]}, ((L + Dvm Global^vM/Global's)
Mod[t,Tl])]/; (Mod[t, tL[lvm, Dvm, Spar, ttask, trb, X, Y, C, L]] > th[lvm,
Dvm, Spar, ttask, trb, X, Y, C, L])

Equation 27 Lookahead at a Given Wallclock Time (Part 2).

ESLa[lvm_, Dvm_, Spar_, ttask_, trb_, X_, Y_,C_, LJ:= Module[{Tl= tL[lvm, Dvm, Spar, ttask, trb, X, Y,
C, L]}, [La[Ivm, Dvm, Spar, ttask, trb, X, Y, t, C, L], {t, 0., T1}]/T1]

Equation 28 Expected Lookahead.

8.3 Experimental Configurations
Figure 8.22 shows feed-forward deployment of Logical Processes and Driving Processes.

The Predictor within the Driving Process is illustrated as well as the Physical Processes
encapsulated by the Logical Processes. Attempting to predict load validates the experimental
results; the application that is not shown in Figure 8.22 is a simple active packet generator. The
Physical Process implements simple forwarding. The experimental goal in this particular
validation of AVNMP is to measure its performance predicting the number of packets in both
time and space throughout the active network. The configuration values used in the experiment
are set as shown in the previous section. These values are used in the analytical results. The
AVNMP MIB (shown in Chapter 7) was polled for all values for used in the validation.

In addition to the feed-forward configuration shown in Figure 8.22, another configuration
using multiple Driving Processes feeding virtual messages into Logical Processes from diverse
locations in the network is experimentally validated. It is important that the Driving Processes
synchronize themselves so that they do not induce a continuous causality induced rollback with
other Driving Processes. A mechanism to prevent this situation is to gradually increase the
Driving Processes LVT, and thus its Lookahead, when causality based rollbacks occur. This will
cause the Receive Times of the resulting messages to increase such that they are ahead of other
Driving Processes' Receive Times, but not so far ahead as to cause the other Driving Processes
to rollback. This synchronization mechanism for Driving Processes appears to work reasonably
well, as shown in the following graphs. The following sections are labeled by the data graphed
and with the AVNMP MIB object identifier name in parenthesis.

136

AH-1 ABONE

Internet

AH-2

AN-3

3325'

Active Node

3325

3320

Active Node

Active Node Active Node

AN-2

 3330

3320

Active Node

Figure 8.22. Experimental Configuration.

8.3.1 Lookahead (IPELkAhead)
The expected Lookahead is the amount of time from wallclock into the future that the

AVNMP system is capable of maintaining within a particular Logical Process. As tolerance
increases and rollbacks occur more often, it is anticipated that Lookahead will be reduced. This
is actually the case as shown in Figure 8.23 and Figure 8.24.

makePlot[dir, "lPUptime.AN-1", "IPELkAhead.AN-1", {PlotJoined->True,
AxesLabel->{"Wallclock (mS)", "Expected Lookahead (mS)"}, PlotLabel-
>"Performance"}]

137

Expected Iixikahsad (nS) prejicticn Bsrfoimgrüs

Wallclock (n6)
200000 400000 600000 800000 ixio

6

Figure 8.23. Lookahead with Multiple Driving Processes.

Expected Ißdkabead (rrS) Itecfamarce

200000

150000

100000

50000

Vfellclock (nS)
500000 lxlO6 1.5 xlO6 2xl06 2.5 xlO6 3x10s

Figure 8.24. Lookahead as a Function of Wallclock.

8.3.2 Proportion Out-of-Tolerance Messages (IPPropY)

As the tolerance is decreased as shown in Figure 8.1, it is anticipated that the number of out-of-
tolerance messages will increase and thus the proportion of out-of-tolerance messages should
increase. This is shown in Figure 8.25 and Figure 8.26. Figure 8.26 shows the increase in the
proportion of out-of-tolerance messages as the tolerance decreases. Figure 8.27 and Figure 8.28
show the proportion of out-of-tolerance messages as a function of the tolerance setting. This
verifies that more messages are out-of-tolerance as the tolerance is decreased.

138

makePlot[dir, »lPUptime.AN-1»,"lPPropY.AN-1", {PlotJoined->True,
AxesLabel->{"Wallclock (mS)", »Proportion Out-of-Tolerance"},
PlotLabel->"Performance"}]

Prcporticn Cut-of-Tolerance

0.8

0.6

0.4

0.2

Wallclcck (nS)

200000 400000 600000 800000 1x10

Figure 8.25. Proportion Out-of-ToIerance Messages with Multiple Driving Processes.

Proportion Cut-of-Tblenance EferforrtHnoe

1

Vfelldock (mS)

500000 ixlO6 1.5 xlO6 2xl06 2.5 xlO6 3xl06

Figure 8.26. Proportion Out-of-Tolerance Messages as a Function of Wallclock.

139

makePlot[dir, "lPActTolerance.AN-1", "lPPropY.AN-1", {PlotJoined->True,
AxesLabel->{"Tolerance (Pkts/mS)", "Proportion Out-of-Tolerance"},
PlotLabel->"Performance"}]

Proportion Out -of -Tolerance PerfamHnce

1

0.8

0.6

0.4

0.2

Tolerance (Pkts /irS)
100 200 300 400 500

Figure 8.27. Proportion Out-of-Tolerance Messages as a Function of Tolerance.

Proportion Cut-of-Tolerance

Tolerance (Bets /itS)
100 200 300 400 500

Figure 8.28. Virtual Messages as a Function of Tolerance with Multiple Driving Processes.

140

8.3.3 Actual Load (loadAppPackets)
An SNMP counter that increases monotonically measures the actual load. Each packet

transfer causes the counter to increase by one. Figure 8.29 and Figure 8.30 show the actual
application counter value as a function of time. Figure 8.31 and Figure 8.32 show predicted load
values from the AVNMP Driving Process. The first prediction set generated a few hundred
milliseconds after the AVNMP began running.

makePlot[dir, »loadAppUptime.AN-1», »loadAppPackets.AN-1»,
{PlotJoined->True, AxesLabel->{"Wallclock (mS)", »Messages»},
PlotLabel->"Load"}]

tfessages

4000

3000

Lead

2000

1000

1x10 2x10 3x10°

teülclcck (irS)
4x10c

Figure 8.29. Load as a Function of Wallclock.

Ifessages

2000

1500

1000

500

Lead Ganeraticn

Vfellclcek (ir6)

200000 400000 600000 800000 1x10 1.2x10°

Figure 8.30 Load with Multiple Driving Processes.

141

makePlot[dir, "loadPredictionPredictedTime.AN-1.1",
"loadPredictionPredictedLoad.AN-1.1", {PlotJoined->True, AxesLabel-
>{"Wallclock (mS)", "Messages"}, PlotLabel->"Load Prediction"}]

Lead Prediction

Vfellclock (mS)
50000 100000 150000 200000

Figure 8.31. Load Prediction as a Function of Wallclock.

Ifessages Lead Prediction

300

250

200

150

100 Wallclock (rrS)
50000 100000 150000 200000 250000 300000

Figure 8.32. Load Prediction with Multiple Driving Processes.

142

8.3.4 Speedup (IPSpeedup)
This is the expected speedup, LVT/t, within an AVNMP Logical Process. The speedup is

expected to decrease as the tolerance tightens and the rollbacks increase. This is validated in
Figure 8.33 and Figure 8.34. Figure 8.35 and Figure 8.36 show speedup as a function of the
proportion of out-of-tolerance messages. As expected the speedup decreases as the proportion of
out-of-tolerance messages increases.

makePlot[dir, »lPUptime.AN-1",»IPSpeedup.AN-1», {PlotJoined->True,
AxesLabel->{"Wallclock (mS)», »Speedup»}, PlotLabel->»Performance»}]

Wallclcck (mS)

500000 lxlO6 1.5 xlO6 2xl06 2.5xlOb 3xlOc

Figure 8.33. Speed as a Function of Wallclock.

143

££ea3up Rcedicticn DsrfantHnae

2.5

1.5

200000 400000 600000 800000 1x106
Vfellclock (itS)

Figure 8.34. Speedup with Multiple Driving Processes.

makePlot[dir, "lPPropY.AN-1","IPSpeedup.AN-l", {PlotJoined->True,
AxesLabel->{"Wallclock (mS)", "Speedup"}, PlotLabel->"Prediction
Performance"}]

Ecedicticn Psrfarmanae

Vfellclock (nß)
0.2 0.4 0.6 0.8

Figure 8.35. Speedup as a Function of Wallclock.

144

Speedup

2.5 ^

Prediction Performance

1.5

Proportion Out-of-Tolerance

Figure 8.36. Speed as a Function of Proportion Out-of-Tolerance Message with Multiple
Driving Processes.

8.3.5 LVT versus Wallclock (IPLVT)
The Local Virtual Time (LVT) should maintain a value between wallclock time and the

maximum allowed Lookahead. LVT starts with a steep positive slope and gradually begins to
level off as shown in Figure 8.37 and Figure 8.38. This measurement is made on node AN-1; the
node into which two Driving Processes was connected in the multiple Driving Processes
experimental validation. LVT in the multiple driving process scenarios is more volatile due to the
Driving Process synchronization mechanism.

makePlot[dir, »lPUptime.AN-1»,"IPLVT.AN-1», {PlotJoined->True,
AxesLabel->{"Wallclock (mS)», "LVT (mS)">, PlotLabel->"Performance"}]

145

LVT (irß) Eferfonranoe

1.4x10°

1.2 xlO6

IxlO6

800000

600000

400000

200000

Wallclock (itß)

500000 IxlO6 1.5 xlO6 2xl06 2.5 xlO6 3xl0£

Figure 8.37. LVT as a Function of Wallclock.

Local Virtual Tims prediction Eterformsnce

Wallclock (rrS)
200000 400000 600000 800000 1x10

Figure 8.38. LVT as a Function of Wallclock with Multiple Driving Processes.

8.3.6 Virtual Message Rate (IPVmRate)
Figure 8.39, Figure 8.40, and Figure 8.41 show the expected virtual message-processing rate.

Rollbacks and activity other than message processing cause the rate to decrease. It is expected
that the rate will decrease as the number of rollback events increases. It is somewhat surprising
that the rate increases initially. The initial increase could be because there are many rollbacks as
the system starts and the predictor within the Driving Processes begins to make better
predictions. These initial rollbacks make the virtual message processing rate appear low. Once

146

the initial "learning" process is over, the virtual message process continues unimpeded until the
tolerance tightens enough to cause more rollbacks again.

makePlot[dir, »lPUptime.AN-1», "lPVmRate.AN-1" , {Plot Joined- >True,
AxesLabel->{"Wallclock (mS)«, "Virtual Messages"}, PlotLabel-
>"Performance"}]

Virtual Ifessages

0.6

0.5

0.4

0.3

0.2

0.1

BsrfoniHnce

WallcLock (irS)

500000 ixlO6 1.5 xlO6 2xl06 2.5xlOB 3x10°

Figure 8.39. Virtual Message Rate as a Function of Wallclock Time.

makePlot[dir, "lPPropY.AN-1", "lPVmRate.AN-1", {PlotJoined->True,
AxesLabel->{"Proportion Out-of-Tolerance», »Virtual Messages»},
PlotLabel->"Performance"}]

147

Virtual tfessages Bsrfarmanoe

0.6

0.5

0.4

0.3

0.2 J
0.1 <_

Erqparticn Out -of -Tblerancs
\ /

,

0.2 0.4 0.6 0.8 1

Figure 8.40. Virtual Message Rate as a Function of Proportion of Out-of-Tolerance
Messages.

Virtual Messages

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Prediction EterfamHnce

toallclock (rrS)
200000 400000 600000 800000 1x10e

Figure 8.41. Virtual Message Rate as a Function Wallclock Time with Multiple Driving
Processes.

148

8.3.7 Task Execution Time (IPETask)
The task execution time is the wallclock time the system spends executing a non-rollback

message It was expected that this value would be essentially constant; however, it increases in
direct proportion to the number of rollbacks as shown in Figure 8.42 and Figure 8.43. This is
believed to be because fossil collection is not being used. The increase in the number of values in
the state queue is causing access of the state queue and MIB to slow in proportion to the queue
size Figure 8 44 and Figure 8.45 show expected task execution time as a function ot the
proportion of out-of-tolerance messages. It clearly increases as out-of-tolerance messages
increase because these are causing the rollbacks.

makePlot[dir, »lPUptime.AN-1»,»IPETask.AN-1", {PlotJoined->True,
AxesLabel->{"Wallclock (mS)», «Expected Task Time (mS)"}, PlotLabel-

>"Performance"}]

Ejected Task Tins (mS

20000

15000

10000

5000

EterfamHnoe

Vfellclodc (icS)

500000 ixio6 1.5 xlO6 2xl06 2.5 xlO6 3xl06

Figure 8.42. Expected Task Execution Time as a Function of Wallclock.

149

Ejected Task Time (rrS)

4000

3000

2000

1000

Vfellclcck (rtß)
200000 400000 600000 800000 IXIQ

6

Figure 8.43. Expected Task Execution Time as a Function of Wallclock with Multiple
Driving Processes.

makePlot[dir, "lPPropY.AN-1","lPETask.AN-1", {PlotJoined->True,
AxesLabel->{"Proportion Out-of-Tolerance", "Task Time (mS)"},
PlotLabel->"Performance"}]

Task Time (m3)

20000

15000

10000

5000

Eterformance

0.2 0.4 0.6 0.8
Proportion Cut - of - Tolerance

Figure 8.44. Expected Task Time as a Function of Out-of-Tolerance Message Proportion.

150

Expected Task Time (irS)

4000

Pixporticn Qit-of-Tolerance

Figure 8.45. Expected Task Time as a Function of Out-of-Tolerance Message Proportion
with Multiple Driving Processes.

8.3.8 Load Prediction (loadPredictionPredictedLoad)
Figure 8.46 and Figure 8.47 show a snapshot of the load prediction MIB showing the

predicted load. The multiple Driving Process configuration results show approximately twice as
much load. The oscillation in this case is believed to be due to the multiple Driving Process
synchronization mechanism.

makePlot[dir, »loadPredictionPredictedTime.AN-
1.10",»loadPredictionPredictedLoad. AN-1.10», {PlotJoined->True,
AxesLabel->{"Predicted Time (mS)", »Predicted Load«}, PlotLabel-
>"Accuracy"}]

151

Predicted Lead

200

150

100

50

Accuracy

100000 200000 300000 400000
Predicted Time (irS)

Figure 8.46. A Snapshot of Predicted Load versus Prediction Time of that Load.

Predicted lead

700

600

500

400

300

200

100

Predicticn Performance

/
/

Predicted Tine (itS)
200000 400000 600000 800000

Figure 8.47. A Snapshot of Predicted Load versus Prediction Time of that Load with
Multiple Driving Processes.

8.3.9 Rollback Execution Time (IPETrb)
Figure 8.48 and Figure 8.49 show the expected time taken to perform a rollback. It again

appears that the expected time to perform a rollback increases with the size of the state queue.

makePlot[dir, "lPUptime.AN-1", "lPETrb.AN-1", {PlotJoined->True,
AxesLabel->{"Wallclock (mS)", "Expected Task Time (mS)"}, PlotLabel-
>"Performance"}]

152

Expected Task Tirte (irß)

80000

60000

40000

20000

Eterformarre

Vfellclcck (irS)

500000 ixlO6 1.5 xlO6 2xl06 2.5 xlO6 3x10 S

Figure 8.48. Expected Task Execution Time versus Wallclock.

Expected Task. Time (irß) pEoäLcticn Iterfrarmance

S0000

50000

 Vfelldock (rtß)

200000 400000 600000 800000 lxl0c

Figure 8.49. Expected Task Execution Time versus Wallclock with Multiple Driving
Processes.

Equation ^9 shows the combination of rollback statistics used to generate graphs as a
function of the total number of rollbacks regardless of their type. Figure 8.50 and Figure 8.51
show the combined number of rollbacks as a function of time.

153

tXroll = Take[getData[dir, "lPPropX.AN-1"], 61];

tYroll = Take[getData[dir, "lPPropY.AN-1"], 61];

troll = tXroll+tYroll;

tm=Take[getData[dir, "lPUptime.AN-1"], 61];

makePlot[tm, troll, {PlotJoined->True, AxesLabel->{"Wallclock (mS)",
"Proportion Rollback Messages"}, PlotLabel->"Performance"}]

Equation 29 Combining Rollback Rates for Out-of-ToIerance and Out-of-Order Message
Proportions.

Rxporticn Rollteck Mssacps ferfanrerce

1

0.8

0.6

0.4

0.2

Vfellclcck (itS)
500000 lxlO6 1.5xlO6 2xl06 2.5x10s 3x10

Figure 8.50. Combined Rollbacks versus Wallclock.

154

Proportion Rollback Messages Overhead

1

0.8

0.6

0.4

0.2 •

Wallclock (mS)

200000 400000 600000 800000 1x10

Figure 8.51. Combined Rollbacks versus Wallclock with Multiple Driving Processes.

8.3.10 Expected Task Rollback Time (IPETrb)

Figure 8.52 and Figure 8.53 show the expected task rollback time as a function of wallclock
time. Figure 8.54 and Figure 8.55 confirm the suspicion that rollback time increases with State
Queue size.

makePlot[getData[dir, "lPUptime.AN-1"], getData[dir, "IPETrb.AN-1"],
{PlotJoined->True, AxesLabel->{"Wallclock (mS)», "Rollback Time (mS)"},
PlotLabel->"Performance"}]

155

Rol]hark Tims (nß) Barforrrarre

80000 j[
60000

\

40000
/

20000

. . , . , . VhMrlcrk (nß)
500000 ixiob 1.5 xlO6 2xl06 2.5 xlO6 3x10

Figure 8.52. Mean Task Rollback Time versus Wallclock.

Expected Rollback Time (mS)
Prediction Performance

60000 •

50000

40000 •

•
30000

20000

10000
•

• • • •
•

•

•

•

• •
Proportion Rollback Messages

Figure 8.53. Mean Task Rollback Time versus Wallclock with Multiple Driving Processes.

156

makaPlot[dir, »lPSQSize.AN-1», "lPETrb.AN-1", {PlotJoined->True,
AxesLabel->{»Rollback Time (mS)», »State Queue Size»}, PlotLabel-
>"Overhead"}3

State Qjeue Size

80000

Cwerhead

60000

40000

20000

 Rollback Tüne (nß)
50 100 150 200 250 300 350

Figure 8.54. State Queue Size versus Wallclock.

State Qjeue Size Eredi

60000

50000

40000

30000

20000

10000

EDEdicticn Overtead

Rollback Time (irS)
50 100 150 200 250 300

Figure 8.55. State Queue Size versus Wallclock with Multiple Driving Processes.

157

8.3.11 Out-of-Order Frequency (IPPropX)
Figure 8.56 and Figure 8.57 show the frequency of out-of-order messages. This is expected

to be relatively small since in a feed-forward network configuration and larger in a multiple
Driving Process network configuration. However, the protocol chosen from the Magician
execution environment does not guarantee message order. In addition, rollbacks can cause out-
of-order message arrival. This is the proportion of out-of-order messages as a function of
tolerance. It is much lower than the proportion of out-of-tolerance messages expected since this
is a feed-forward network.

makePlot[dir, "lPUptime.AN-1"
AxesLabel->{"Wallclock (mS)",
>"Overhead"}]

"lPPropX.AN-1",
■Proportion Out-

{PlotJoined->True,
of-Order"}, PlotLabel-

Errporticn Cut-of-Order

0.3

0.25

0.2

0.15

0.1

0.05

Overhead

500000 ixio6 1.5 xlO6 2xl06 2.5 xlO6 3x10 6
Vfellclock (nS)

Figure 8.56. Proportion Out-of-Order versus Wallclock.

158

Prop Cut-of-Order Massages Cvectead

1 1
0.8

0.6

0.4
^

0.2 1
, Wsllclock (nß)

200000 400000 600000 800000 1x10 6

Figure 8.57. Proportion Out-of-Order versus Wallclock with Multiple Driving Processes.

8.3.12 Out-of-Tolerance Frequency (IPPropY)
Figure 8.58 and Figure 8.59 show the proportion of out-of-tolerance messages. Clearly this

should increase as tolerance decreases and will thus increase over time as tolerance is
programmed to decrease during execution.

makePlot[dir, "lPActTolerance.AN-l", nlPPropY.AN-l", {PlotJoined->True,
AxesLabel->{"Tolerance", "Proportion Out-o£-Tolerancen}, PlotLabel-
>»Overhead"}]

159

icn Cut-of-Tbleraros Overhead

1

0.8

0.6

0.4

0.2

Tblsrams
100 200 300 400 500

-
Figure 8.58. Proportion of Out-of-Tolerance Messages versus Tolerance.

makePlot [dir, "lPUptime.AN-1", "lPPropY.AN-1", {PlotJoined->Tme,
AxesLabel->{"Wallclock (mS)", "Proportion Out-of-Tolerance"},
PlotLabel->"Overhead"}]

Errporticn Out-of-Tolerance Overhead

Wallclcck (itß)

200000 400000 600000 800000 1x10s

Figure 8.59. Proportion of Out-of-Tolerance Messages versus Wallclock Time with
Multiple Processes.

160

8.3.13 Queue Sizes (IPSQSize, IPQSSize, IPQRSize)

This section examines the queue sizes of the various queues in AVNMP. Figure 8.60, Figure
8 61 Figure 8.62, Figure 8.63, Figure 8.64 and Figure 8.65 show the rate of queue size increases
versus Wallclock time. As stress increases, the rate of addition of values to the state queue
decreases because most of the time is used to accomplish rollback. However, during this time of
stress, the Send Queue and Receive Queue continue to increase slightly as anti-messages are

transmitted.

makePlot[dir, «lPUptime.AN-1»,"lPSQSize.AN-1", {PlotJoined->True,
AxesLabel->{"Wallclock (mS)", »State Queue Size»}, PlotLabel-
>"Overhead"}]

State Queue Size

350

300

250

200

150

100

50

Overhead

 Wallclock (irS)
500000 lxlO6 1.5 xlO6 2xl06 2.5 xl0b 3xl0e

Figure 8.60. State Queue Size versus Wallclock.

161

State Qua.ie Size

300

250

200

150

100

50

Overhead

1/fellclcck (nrS)
200000 400000 600000 800000 IXIQ

6

Figure 8.61. State Queue Size versus Wallclock with Multiple Driving Processes.

makePlot[dir, "lPUptime.AN-1","lPQSSize.AN-1", {PlotJoined->True,
AxesLabel->{"Wallclock (mS)", "Send Queue Size"}, PlotLabel-
>"Overhead"}]

Send Queue Size

150

125

100

75

50

25

Overhead

Wallclock (mS)
500000 lxio

6 1.5xl06 2xl06 2.5xl06 3xl06

Figure 8.62. Send Queue Size versus Wallclock.

162

Send Queue Size Overhead

Wallclock (mS)

200000 400000 600000 800000 1x10

Figure 8.63. Send Queue Size versus Wallclock with Multiple Processes.

makePlot[dir, "lPUptime.AN-1","lPQRSize.AN-1", {PlotJoined->True,
AxesLabel->{-Wallclock (mS)n, "Receive Queue Size-}, PlotLabel-
>"Overhead"}]

Passive Queue Size O/erbead

350

300

250

200

150

100 /

50

500000 ixio6 1.5 xlO6 2xl06 2.5 xlO6 3x10 6

Wallclock (rrS)

Figure 8.64. Receive Queue Size versus Wallclock.

163

Receive Queue Size

300

250

200

150

100

Overhead

Wallclock (mS)
Z00000 400000 600000 800000 ixioe

Figure 8.65. Receive Queue Size versus Wallclock with Multiple Processes.

8.3.14 Total Number of All Message Types Processed (IPNumPkts)
Figure 8.66 and Figure 8.67 show the total number of all message types that are processed by

the Logical Process. Note that this is reset after runMinutes, which in this case is 5 minutes or
300,000 milliseconds.

makePlot[dir, "lPUptime.AN-1","IPNumPkts.AN-1", {Plot Joined->Tme,
AxesLabel->{"Wallclock (mS)n, "Packets"}, PlotLabel->"Overhead"}]

164

Eäcksts Overhead

Wallclock (irß)

500000 ixio6 1.5 xlO6 2xl06 2.5x10 3x10 ^

Figure 8.66. Total Number of Messages Processed versus Wallclock.

_ Vfellclock (nß)
200000 400000 600000 800000 1x10*

Figure 8.67. Total Number of Messages Processed versus Wallclock with Multiple
Processes.

8.3.15 Number of Virtual Messages (IPVirtual)

Figure 8 68 and Figure 8.69 show the total number of virtual messages processed. The ability to
process virtual messages decreases as the system becomes stressed with rollback and increasing

queue sizes.

165

makePlot[dir, "lPUptime.AN-1","lPVirtual.AN-1", {PlotJoined->True,
AxesLabel->{"Wallclock (mS)", "Virtual Messages"}, PlotLabel-
>"Overhead"}]

Virtual Messages Overhead

500000 ixl0
6 1.5xl06 2xl06 2.5xl06 3xl06

Wallclock (mS)

Figure 8.68. Number of Virtual Messages versus Wallclock.

Virtual Massages

100

80

50

40

20

Overhead

200000 400000 600000 800000 lxio6
Wallclcck (itß)

Figure 8.69. Number of Virtual Messages versus Wallclock with Multiple Driving
Processes.

166

8.3.16 Number of Anti-Messages (IPNumAnti)
Figure 8.70 and Figure 8.71 display the total number of anti-messages. This is expected to

increase over time. This value is reset every runMinutes, which in this case is 300,000
milliseconds. This is the total number of anti-messages produced over wallclock time.

makePlot[dir, -lPUptime.AN-1","IPNumAnti.AN-1", {PlotJoined->True,
AxesLabel->{ "Wallclock (mS)", "Anti-Messages"}, PlotLabel->"Overhead"}]

Anti -Massages

80

Overhead

60

40

20

 Vfellclock (nS)
200000 400000 600000 800000 ixio

Figure 8.70. Number of Anti-Messages versus Wallclock with Multiple Driving Processes.

makePlot[dir, "lPUptime.AN-1», "IPNumAnti.AN-1", {PlotJoined->True,
AxesLabel->{"Wallclock (mS)", "AntiMessages"}, PlotLabel->"Overhead"}]

167

Antüyfessages

20 •

15

10

5 ■

Overhead

Vtellclock (irß)
500000 ixio6 1.5xlO6 2xl06 2.5 xlO6 3x10e

Figure 8.71. Number of Anti-Messages versus Wallclock.

8.3.17 Difference between actual value and closest Send Queue packet value
(IPStateError)

Figure 8.72 and Figure 8.73 show the difference between the application value and the
closest in time send queue message value. This is the difference between the send queue value
and actual application value over wallclock time. Clearly, the prediction error decreases in order
to meet the tighter tolerance.

makePlot[dir, "lPUptime.AN-l","IPStateError.AN-1", {PlotJoined->True,
AxesLabel->{"Wallclock (mS)n, "Prediction Error"}, PlotLabel-
>"Accuracy"}]

168

Prediction Error

200

Accuracy

500000 ixio6 1.5 xlO6 2xl06 2.5 xlO6 3xl06

Figure 8.72. Prediction versus Wallclock.

200

100

Wallclock (itß)

Prediction Error

400

300

Vfellclock (mS)
200000 400000 600000 800000 1x10e

Figure 8.73. Prediction versus Wallclock with Multiple Driving Processes.

169

8.3.18 Time Difference (IPTdiff)

Figure 8.74 and Figure 8.75 display the difference between the time of the actual value and the
predicted time with which it is compared in order to determine out-of-tolerance conditions.
Clearly, these values should be as close in possible in time so that a fair comparison can be
made. As the system is stressed, it becomes harder to find predicted values that are close to
actual values in time. This is likely to be due to the fact that fewer predictions are being made
and the predictions are farther apart, making an exact time match with actual harder to obtain.

makePlot[dir, "lPUptime.AN-1","IPTdiff.AN-1", {PlotJoined->True,
AxesLabel->{"Wallclock (mS)", "Time Difference"}, PlotLabel-
>"Accuracy"}]

Tine DLfferenoa

40000

30000 ■

.accuracy

20000 r

10000

Waüdock (itS)
500000 1x10s 1.5 xlO6 2xl06 2.5 xlO6 3xl06

Figure 8.74. Time Difference in Prediction Check versus Wallclock.

170

Tine Difference (mS)

35000

30000

25000

20000

15000

10000

5000

Accuracy

Wallclock (itß)

200000 400000 600000 800000 1x10

Figure 8.75. Time Difference in Prediction Check versus Wallclock with Multiple Driving
Processes.

8.3.19 Number of Causality Rollbacks (IPCausalityRollbacks)

Figure 8.76 and Figure 8.77 display the total number of causality rollbacks. This is anticipated to
occur early for the multiple Driving Process configurations as the Driving Processes synchronize
among themselves. In order to further stress the system, Magician best-effort packet delivery is
being\ised. This means that packets are not guaranteed to arrive in order, or at all. However, the
large number of causality rollbacks in the multiple Driving Process scenario is due to the
synchronization among the Driving Processes.

 lPUptime.AN-l",nIPCausalityRollbacks.AN-1", {PlotJoined-
>True, AxesLabel->{-Wallclock (roS)", "Causality Rollbacks"}, PlotLabel-
makePlot[dir,
>True, AxesLa
>"Overhead"}]

171

Causality Rollbacks

5

Cvetbead

Wallclcck (mS)
500000 1x10s 1.5 xlO6 2xl06 2.5 xlO6 3x10

Figure 8.76. Number of Causality Rollbacks versus Wallclock.

Causality Rollbacks Prediction Overhead

25

20

15

10

5

Wallclock (irS)
200000 400000 600000 800000 1x106

Figure 8.77. Number of Causality Rollbacks versus Wallclock with Multiple Driving
Processes.

172

8.3.20 Number of Tolerance Rollbacks (IPToleranceRollbacks)

Figure 8.78 and Figure 8.79 display the total number of tolerance based rollbacks. These appear
to&decrease. However, in proportion to the total number of packets processed, tolerance-based
rollbacks are actually an increasing proportion because the total number of packets is decreasing
over time due to exploding queue sizes and the increasing number of rollbacks.

makePlot [dir, "lPUptiine.AN-1", "IPToleranceRollbacks.AN-1", {PlotJoined-
>True, AxesLabel->{"Wallclock (mS)", "Tolerance Rollbacks"}, PlotLabel-
>"Overhead"}]

Tblerarre Rollbacks Overhead

Wallclock (nß)

500000 1x10 1.5x10 2x10 2.5x10° 3x10

Figure 8.78. Number of Tolerance Rollbacks versus Wallclock.

173

Tbleranoe Rollbacks Overhead

Wallclcck (mS)
200000 400000 600000 800000 ixio

6

Figure 8.79. Number of Tolerance Rollbacks versus Wallclock with Multiple Driving
Processes.

8.3.21 State Error (IPStateError)

Figure 8.80 and Figure 8.81 display the difference between the predicted and actual application
values. Clearly in both the feed-forward and multiple Driving Process scenarios, the error is
within the required tolerance and decreases appropriately.

makePlot[dir, "lPUptime.AN-1","IPStateError.AN-1", {PlotJoined->True,
AxesLabel->{"Wallclock (mS)", "State Error"}, PlotLabel->"Overhead"}]

174

Wallclcck (nß)

500000 lxlO6 1.5 xlO6 2xl06 2.5x10" 3x10

Figure 8.80. Prediction Error versus Wallclock.

200

100

State Error

400

300

Wallclock (nß)
200000 400000 600000 800000 ixio

6

Figure 8.81. Prediction Error versus Wallclock with Multiple Driving Processes.

8.3.22 Lookahead Analysis versus Actual

Figure 8.82 and Figure 8.83 show the Lookahead as function of the proportion of out-of-
tobrance messages. In the feed-forward network configuration, Lookahead reduces as out-of-
tolerance messages increase. However, this is not so clearly the case in the multiple Driving

175

Process configuration. This is likely to be due to the driver synchronization mechanism and its
causality rollbacks. Equation 30 shows the combined list of values being generated for the
analytical versus actual plot of Lookahead. These plots are shown in Figure 8.84 and Figure
8.85.

makePlot[dir, "lPPropY.AN-1","IPELkAhead.AN-l", {PlotJoined->True,
AxesLabel->{ "Proportion Out-of-Tolerance", "Expected Lookahead (mS)
PlotLabel->"Overhead"}]

},

Ejected lookahead (nS)

200000

Overhead

150000

100000

50000

Rctporticn Out-of-Tbleranos
0.2 0.4 0.6 0

Figure 8.82. Lookahead versus Proportion Out-of-Tolerance.

176

Lcotebaad (nß) Cvertead

_ Ercporticn Cut -of -Tolerance

Figure 8.83. Lookahead versus Proportion Out-of-Tolerance with Multiple Driving
ig

Processes

l=gecList[dir, "lPPropY.AN-1","IPELkAhead.AN-l"];
al=Table[{l[[i]][[l]],l[[ill[[211/1000.}, {i,2,Length[l]}];
m=MultipleListPlot[

Table[{Y,ESLa[\[Lambda]vm,\[CapitalDelta] vm, 1.0, task\[Tau],\[Tau]rb,
x,Y,0.,200.]},{Y,.0,.5,.1>],

PlotJoined->{True,True},
AxesLabel->{"Proportion out-of-tolerance»,"Expected Lookanead

(Seconds)"}
1

1

Equation 30 Generate Lists of Actual and Analytical Values for Plot.

177

Expected Lookahead (Seconds)
< > . _* »

200

150

100

50

" ^ *,

0.2 0.4 0.6 0.
Proportion Out-of-Tolerance

Figure 8.84. Analytical (Dashed Line) versus Actual (Solid Line) Lookahead as a Function
of Proportion Out-of-Tolerance Messages.

Proportion Cut - of -Tolerance

Figure 8.85. Analytical (Dashed Line) versus Actual (Solid Line) Lookahead as a Function
of Proportion Out-of-Tolerance Messages with Multiple Driving Processes.

8.3.23 Speedup Analysis versus Actual

Figure 8.86 and Figure 8.87 show AVNMP speedup as a function of the proportion of out-of-
tolerance messages. Equation 31 shows the generation of the data for the plot of analytical versus

178

actual speedup. The plots of analytical versus actual speedup are shown in Figure 8.88 and

Figure 8.89.

makePlottdir, «IPPropY.AN-l», »IPSpeedup.AN-l», <Pl°"°^ed;^e'
AxesLabel->{«Speedup«, »Proportion Out-of-Tolerance">, PlotLabel-

>"Overhead"}]

Proportion Out-of-Tolerance

0.2 0.4 0.6

Figure 8.86. Proportion Out-of-ToIerance Messages versus Speedup.

179

Errporticn Cut - of - Tbleraxe Overhead

i^pesijp

Figure 8.87. Proportion Out-of-ToIerance Messages versus Speedup with Multiple Driving
Processes.

su=getList[dir, "lPPropY.AN- 1","IPSpeedup.AN- -1-] i

suMod= Table[{su[[i]] [[1]], «u[[i]][[2]]>, {i,l. Length[su]}];

MultipleListPlot[suMod,
Table [{Y, Speedup [\ [Lambda] vm
x,Y,0.,0.,l.]},{Y,.1,.9,-1}]
PlotJoined->True,AxesLabel->
]

L, \ [CapitalDelta]vm, 1

{"Proportion out-of-

.0, task\[Tau],\[Tau]rb,

tolerance","Speedup"}

Equation 31 Generation of Analytical versus Actual Data.

180

ProportionOutof- Toleran
0.2 0.4 0.6 0.8 1

Figure 8.88. Analytical (Dashed Line) versus Actual (Solid Line) Speed as a Function of
Proportion Out-of-Tolerance.

££ea±p

2.5

Eccporticn. Cut -of -Tolerance

Figure 8.89. Analytical (Dashed Line) versus Actual (Solid Line) Speed as a Function of
Proportion Out-of-Tolerance with Multiple Driving Processes.

181

8.3.24 Accuracy Analysis

Equation 32 shows the actual and analytical data being prepared for the plots in Figure 8.90 and
Figure 8.91. The predicted values are shown as a function of wallclock time and LVT. This data
was collected by SNMP polling an active execution environment that was enhanced with
AVNMP. The valleys between the peaks are caused by the polling delay. A diagonal line on the
LVT/t plane from the front right corner to the back left corner separates LVT in the past from LVT
in the future; future LVT is towards the back of the graph, past LVT is in the front of the graph.
Starting from the front, right hand corner, examine slices of fixed wallclock time over LVT; this
shows both the past values and the predicted value for that fixed wallclock time.

dl = readSnmp3DPlot[dir, "lPUptime.AN-1",
{"loadPredictionPredictedTime.AN-1",30},
{"loadPredictionPredictedLoad.AN-l",30}, 1, 1000 60];

plot3DSnmp[dl, AxesLabel->{"Wallclock (minutes)", "LVT (minutes)",
"Actual Packets"}, ViewPoint->{2.383, -1.410, 1.945}]

Equation 32 Generation of Actual versus Predicted Values.

Wallclock (minutes)

1500

1000

Number Packets

ssssgssisSS

LVT (minutes)

Figure 8.90. Number of Packets versus LVT and Wallclock.

182

Number of Packets

Wallclock (minutes)

60
40

20

Figure 8.91. Number of Packets versus LVT and Wallclock with Multiple Driving
Processes.

8.3.25 Time Difference (IPTdiff)
The graphs in Figure 8.92 and Figure 8.93 show the difference in the predicted event time

versus the actual event time. As stress increases, fewer predictions are made and they are farther
apart in time. Thus, it less likely that a predicted event is in close temporal proximity to a given
actual event. In this version of AVNMP, the temporally closest predicted event is compared with
an actual event and the difference is computed. There is no attempt to compensate for the
potential time difference. Thus, this appears as prediction error even though it is possible that the
prediction is correct; there is simply no predicted value existing near the time of the actual event.

makePlot[dir, "lPUptime.AN-1", "lPTdiff.AN-1», {PlotJoined->True,
AxesLabel->{"Wallclock (mS)", "Check Time Difference (mS)"}, PlotLabel-
>"Prediction Accuracy"}]

183

Cftsck lire Difference (mS) Prediction Accuracy
40000

30000

20000

10000

Wallclcck (mS)
500000 lxlO6 1.5 xlO6 2xl06 2.5 xlO6 3xl06

Figure 8.92. Time Difference between Actual and Predicted Value when Tolerance
Checked.

lime Difference (irS)

35000

accuracy

Vfellclcxk (irS)
200000 400000 600000 800000 1x10s

Figure 8.93. Time Difference between Actual and Predicted Value when Tolerance
Checked with Multiple Driving Processes.

184

8.4 Summary

This chapter has presented an experimental validation of AVNMP running in the Magician
Execution Environment. While many detailed results were presented in this section, the salient
points are the following. The AVNMP system, injected into the network as an active application,
is able to model the system and predict state information in a manner that meets the demand for
accuracy at a particular active node. Greater demand is met at the cost of AVNMP performance,
that is, the ability of AVNMP to predict farther into the future. Two experimental configurations
were presented; a feed-forward network configuration and a configuration in which two Driving
Processes feed into the same Logical Process. The latter configuration is of interest because
Driving Processes had been considered as independent processes that "drive" the Logical
Processes forward in time. However, the Driving Processes require feedback in order to prevent
the possibility of each injecting a virtual message out of order with regard to Receive Time. This
is prevented by a message from the common Logical Process to the slower Driving Processing
asking it to jump forward in Local Virtual Time by a small increment. This mechanism appears
to work; however, the synchronization of Driving Processes adds additional overhead to the
common Logical Process and could use further refinement. For example, the common Logical
Process appears to be rolling back in this case, which is not necessary. However, the concept of
AVNMP is shown in this chapter to be a feasible one. This chapter has focused on network
traffic and load prediction; however, as this chapter is being written AVNMP is also being
applied to CPU utilization prediction in collaboration with NIST.

185

SUMMARY AND CONCLUDING REMARKS

This project has challenged itself to consider the benefits of Active Networking and to apply
those benefits towards the management of Active Networks. The inherently distributed nature of
communication networks and the computational power unleashed by the Active Networking
paradigm have been used to mutual benefit in the development of the Active Virtual Network
Management Prediction mechanism. Both load and CPU prediction capability have been
explored using AVNMP. Active Networks benefit from AVNMP by continuously providing
information about potential problems before they occur. AVNMP benefits from Active Networks
in many ways. The first and most practical is the ease of development and deployment of this
novel protocol. This could not have been accomplished so quickly or easily given today's closed,
proprietary network device processing. Another benefit is the fact that network packets now have
the unprecedented ability to control their own processing. Great advantage is taken of this new
capability in AVNMP. Virtual messages, varying widely in content and processing, can adjust
their predicted values as they travel through the network. Finally, Active Networks add a level of
robustness that cannot be found in today's networks. This robustness is due to the ability of the
AVNMP system components, which are themselves active packets, to easily migrate from one
node to another in the event of failure — or the prediction of failure provided by AVNMP!

There are two readily apparent directions in which this work can be carried forward. The first
is the practical development and integration of prediction into an active network management
framework. AVNMP can provide early warning of potential problems; however, the
identification of a solution and marshaling of automated solution entities within an active
network has not yet been fully addressed. This project has begun to lay the groundwork for such
automated composition of management solutions within an active network (Kulkarni et al.,
1998).

The second direction in which this work should be carried forward is the exploration of a
relatively unexplored area -understanding the benefits of active networking Algorithmic
Information Theory and its close companion, Complexity Theory. To our knowledge, this work
is the first to propose and begin investigation into using the newly available processing power of
Active Networks through the concept of Algorithmic Information (our "streptichrons").
Complexity Theory has been receiving more attention lately and is making significant theoretical
progress. Active Networking is the ideal place to be taking advantage of this progress.

Reference

A.B. Kulkarni and S.F. Bush. Active Network Management, Kolmogorov, Complexity, and
Streptichrons. GE CRD Class I Technical Report 2000CRD107
(http://www.crd.ge.com/crd_reports).

186

GLOSSARY

AA Active Application. An Active Application is supported by the Execution Environment on an
active network device. The Active Application consists of active packets that support a
particular application.

Autoanaplasis Autoanaplasis is the self-adjusting characteristic of streptichrons. One of the
virtues of the Active Virtual Network Management Prediction Algorithm is the ability for the
predictive system to adjust itself as it operates. This is accomplished in two ways. When real
time reaches the time at which a predicted value had been cached, a comparison is made
between the real value and the predicted value. If the values differ beyond a given tolerance,
then the logical process rolls backward in time. Also, active packets which implement virtual
messages adjust, or refine, their predicted values as they travel through the network.

AVNMP Active Virtual Network Management Prediction. An algorithm that allows a
communications network to advance beyond the current time in order to determine events
before they occur.

C/E Condition Event Network. A C/E network consists of state and transition elements which
contain tokens. Tokens reside in state elements. When all state elements leading to a
transition element contain a token, several changes take place in the C/E network. First, the
tokens are removed from the conditions which triggered the event, the event occurs, and
finally tokens are placed in all state outputs from the transition which was triggered. Multiple
tokens in a condition and the uniqueness of the tokens are irrelevant in a C/E Net.

CE Clustered Environment. One of the contributions of (Avril and Tropper, 1995) in CTW is an
attempt to efficiently control a cluster of LPs on a processor by means of the CE. The CE
allows multiple LPs to behave as individual LPs as in the basic time warp algorithm or as a
single collective LP.

Channel Channel. An active network channel is a communications link upon which active
packets are received. The channel determines the type of active packet and forwards the
packet to the proper Execution Environment. Principals use anchored channels to send
packets between the execution environment and the underlying communication substrate.
Other channels are cut through, meaning that they forward packets through the active node-
from an input device to an output device-without being intercepted and processed by an
Execution Environment. Channels are in general full-duplex, although a given principal
might only send or receive packets on a particular channel.

CMB Chandy-Misra-Bryant. A conservative distributed simulation synchronization technique.

CMIP Common Management Information Protocol. A protocol used by an application process
to exchange information and commands for the purpose of managing remote computer and
communications resources. Described in (ISO, 1995).

187

CS Current State. The current value of all information concerning a PP encapsulated by an LP
and all the structures associated with the LP.

CTW Clustered Time Warp. CTW is an optimistic distributed simulation mechanism described
in (Avril andTropper, 1995).

EE Execution Environment. The Execution Environment is supported by the Node Operating
System on an active network device. The Execution Environment receives active packets and
executes any code associated with the active packet.

Fossil In an AVNMP Logical Process, as the Local Virtual Time advances, the state queue is
filled with predicted values. As the wallclock advances, the predicted values become actual
values. When the wallclock advances beyond the time a predicted value was to occur, the
value becomes a fossil because it is no longer a prediction, but an actual event that has
happened in the past. Fossils should be removed periodically to avoid excessive use of
memory.

FSM Finite State Machine. A five-tuple consisting of a set of states, an input alphabet, an output
alphabet, a next-state transition function, and an output function. Used to formally describe
the operation of a protocol.

GPS Global Positioning System. A satellite-based positioning service developed and operated
by the Department of Defense.

GSV Global Synchronic Distance. The maximum Synchronic Distance in a Petri-Net model of a
system.

GVT Global Virtual Time. The largest time beyond which a rollback based system will never
rollback.

IETF Internet Engineering Task Force. The main standards organization for the Internet. The
IETF is a large open international community of network designers, operators, vendors, and
researchers concerned with the evolution of the Internet architecture and the smooth
operation of the Internet. It is open to any interested individual.

IPC Inter-Processor Communication. Communication among Unix processes. This may take
place via sockets, shared memory, or semaphores.

LP Logical Proces. An LP consists of the PP and additional data structures and instructions
which maintain message order and correct operation as a system executes ahead of real time.

LVT Local Virtual Time. The Logical Process contains its notion of time known as Local
Virtual Time.

NodeOS Node Operating System. The Node Operating System is the base level operating system
for an active network device. The Node Operating System supports the Execution
Environments.

MIB Management Information Base. A collection of objects which can be accessed by a
network management protocol.

MTW Moving Time Windows. MTW is a distributed simulation algorithm that controls the
amount of aggressiveness in the system by means of a moving time window. The trade-off in
having no roll-backs in this algorithm is loss of fidelity in the simulation results.

188

NFT No False Time-stamps. NFT Time Warp assumes that if an incorrect computation
produces an incorrect event (EiT), then it must be the case that the correct computation also
produces an event (EiT) with the same time-stamp. This simplification makes the analysis in
(Ghosh et al., 1993) tractable.

NPSI Near Perfect State Information. The NPSI Adaptive Synchronization Algorithms for
PDES are discussed in (Srinivisan and Paul F. Reynolds, 1995b) and (Srinivisan and Paul F.
Reynolds, 1995a). The adaptive algorithms use feedback from the simulation itself in order
to adapt. The NPSI system requires an overlay system to return feedback information to the
LPs. The NPSI Adaptive Synchronization Algorithm examines the system state (or an
approximation of the state) calculates an error potential for future error, then translates the
error potential into a value which controls the amount of optimism.

NTP Network Time Protocol. A TCP/IP time synchronization mechanism. NTP (Mills, 1985) is
not required in VNC on the RDRN because each host in the RDRN network has its own GPS
receiver.

PA Perturbation Analysis. The technique of PA allows a great deal more information to be
obtained from a single simulation execution than explicitly collected statistics. It is
particularly useful for finding the sensitivity information of simulation parameters from the
sample path of a single simulation run. It may be an ideal way for VNC to automatically
adjust tolerances and provide feedback to driving process(es).Briefly, assume a sample path,
(0,£) from a simulation. 0 is vector of all parameters and £ is a vector of all random
occurrences. L(0£) is the sample performance. /(©,£) is the average performance,
£[L(0,£)]. Parameter changes cause perturbations in event timing. Perturbations in event
timing propagate to other events. This induces perturbations in L. If perturbations into (©,£)
are small, assume event trace (0 + d&&) remains unchanged. Then dL{@£)ld® can be
calculated. From this, the gradient of 7(0) can be obtained, which provides the sensitivity of
performance to parameter changes. PA can be used to adjust tolerances while VNC is
executing because event times are readily available in the SQ.

PDES Parallel Discrete Event Simulation. PDES is a class of simulation algorithms which
partition a simulation into individual events and synchronizes the time the events are
executed on multiple processors such that the real time to execute the simulation is as fast as
possible.

PDU Protocol Data Unit. 1. Information that is delivered as a unit among peer entities of a
network and that may contain control information, address information, or data. 2. In layered
systems, a unit of data that is specified in a protocol of a given layer and that consists of
protocol-control information of the given layer and possibly user data of that layer.

P/T Place Transition Net. A P/T Network is exactly like a C/E Net except that a P/T Net allows
multiple tokens in a place and multiple tokens may be required to cause a transition to fire.

PIPS Partially Implemented Performance Specification. PIPS is a hybrid simulation and real-
time system which is described in (Bagrodia and Shen, 1991). Components of a performance
specification for a distributed system are implemented while the remainder of the system is
simulated. More components are implemented and tested with the simulated system in an
iterative manner until the entire distributed system is implemented.

189

PP Physical Process. A Physical Process is nothing more than an executing task defined by
program code. An example of a PP is the RDRN beam table creation task. The beam table
creation task generates a table of complex weights which controls the angle of the radio
beams based on position input.

Principal The primary abstraction for accounting and security purposes is the principal. All
resource allocation and security decisions are made on a per-principal basis. In other words, a
principal is admitted to an active node once it has authenticated itself to the node, and it is
allowed to request and use resources.

QR Receive Queue. A queue used in the VNC algorithm to hold incoming messages to a LP.
The messages are stored in the queue in order by receive time.

QS Send Queue. A queue used in the VNC algorithm to hold copies of messages which have
been sent by a LP. The messages in the QS may be sent as anti-messages if a rollback occurs.

QoS Quality of Service. Quality of Service is defined on an end-to-end basis in terms of the
following attributes of the end-to-end ATM connection: Cell Loss Ratio, Cell Transfer
Delay, Cell Delay Variation.

RT Real Time. The current wall clock time.

SLP Single Processor Logical Process. Multiple LPs executing on a single processor.

SLW Sliding Lookahead Window. The SLW is used in VNC to limit or throttle the prediction
rate of the VNC system. The SLW is defined as the maximum time into the future for which
the VNC system may predict events.

SmallState SmallState is a named cache within an active network node's execution environment
that allows active packets to store information. This allows packets to leave information
behind for other packets to use.

SNMP Simple Network Management Protocol. The Transmission Control Protocol/Internet
Protocol (TCP/IP) standard protocol that (a) is used to manage and control IP gateways and
the networks to which they are attached,(b) uses IP directly, bypassing the masking effects of
TCP error correction,(c) has direct access to IP datagrams on a network that may be
operating abnormally, thus requiring management, (d) defines a set of variables that the
gateway must store, and (e) specifies that all control operations on the gateway are a side-
effect of fetching or storing those data variables, i.e., operations that are analogous to writing
commands and reading status. SNMP is described in (Rose, 1991).

SQ State Queue. The SQ is used in VNC as a LP structure to hold saved state information for use
in case of a rollback.The SQ is the cache into which pre-computed results are stored.

Streptichron A Streptichron is an active packet facilitating prediction. It is a superset of the
virtual message. It can contain self-adjusting model parameters, an executable model, or
simple state values.

TR Receive Time. The time a VNC message value is predicted to be valid.

TS Send Time. The LVT that a virtual message has been sent. This value is carried within the
header of the message. The TS is used for canceling the effects of false messages.

190

REFERENCES

Alexander, D.S., Arbaugh, W.A., Hicks, M.W., Kakkar, P., Keromytis, A.D., Moore, J.T.,
Gunter, CA., Nettles, S.M., and Smith, J.M. (1998). The SwitchWare Active Network
Architecture. IEEE Network, 12(3):27-36.

Alexander, D.S., Braden, B., Gunter, C., Jackson, A., Keromytis, A., Minden, G., and Wetherall,
D., editors (1997). Active Network Encapsulation Protocol (ANEP). Active Networks Group.
Request for Comments: draft

Andre, C., Armand, P., and Boeri, F. (1979). Synchronic Relations and Applications in Parallel
Computation. Digital Processes, pages 99,113.

Aronson, I., Levine, J., and Tsimring, L. (1994). Controlling Spatio-Temporal Chaos. Phys. Rev.
Lett., 72.

Avril, H. (1996). Clustered Time Warp and Logic Simulation. PhD thesis, McGill University.

Avril, H. and Tropper, C. (1995). Clustered Time Warp and Logic Simulation.

Bagrodia, R. and Shen, C.-C. (1991). MIDAS: Integrated Design and Simulation of Distributed
Systems. IEEE Transactions on Software Engineering.

Ball, D. and Hoyt, S. (1990). The Adaptive Time-Warp Concurrency Control Algorithm. In
Proceeding ofSCS'90.

Berry, O. and Jefferson, D. (1985). Critical Path Analysis of Distributed Simulation. In SCS
Multi Conference on Distributed Simulation.

Boukerche, A. and Tropper, C. (1994). A Static Partitioning and Mapping Algorithm for
Conservative Parallel Simulations. In Proceedings of the 8th Workshop on Parallel and
Distributed Simulation, pages 164,172.

Braden, B., Cerpa, A., Fischer, T., Lindell, B., Kaum, J., and Phillips, G. (2000). Introduction to
the ASP Execution Environment. Technical report, USC/ISI. url: http://www.isi.edu/active-
signal/ARP/index.html.

Bush, S.F., , Kulkarni, A., Evans, S., and Galup, L. (2000). Active Jitter Control. In 7th
International IS\&N Conference, Intelligence in Services and Networks (ISN) '00, Kavouri,
Athens, Greece.

Bush, S.F. (1997). The Design and Analysis of Virtual Network Configuration for a Wireless
Mobile ATM Network. PhD thesis, University of Kansas.

Bush, S.F. (1999). Active Virtual Network Management Prediction. In Parallel and Discrete
Event Simulation Conference (PADS) '99.

191

Bush, S.F. (2000). Islands of Near-Perfect Self-Prediction. In Proceedings ofVwsim'00: Virtual
Worlds and Simulation Conference, WMC'OO: 2000 SCS Western Multi-Conference, San
Diego, SCS (2000).

Bush, S.F. and Barnett, B. (1998). A Security Vulnerability Assessment Technique and Model.
Technical Report 98CRD028, General Electric Corporate Research and Development Center.

Bush, S.F., Frost, V.S., and Evans, J.B. (1999). Network Management of Predictive Mobile
Networks. Journal of Network and Systems Management, 7(2).

Calvert, K. (1998). Architectural Framework for Active Networks (Version 0.9). Active
Networks Working Group.

Chandy, K.M. and Misra, J. (1979). Distributed Simulation: A Case Study in Design and
Verification of Distributed Programs. IEEE Transactions on Software Engineering.

Christopher Landauer and Kirstie L. Bellman (1996). Semiotics of Constructed Complex
Systems. In Intelligent Systems: A Semiotic Perspective Proceedings of the 1996
International Multidisciplinary Conference Volume I: Theoretical Semiotics, Workshop on
Intelligence in Constructed Complex Systems.

daSilva, S., Florissi, D., and Yemini, Y. (1998). Composing Active Services in NetScript. In
Proceedings of the DARPA Active Networks Workshop (Tucson, Arizona).

DiBernardo, M. (1996). An Adaptive Approach to the Control and Synchronization of
Continuous-Time Chaotic Systems. Int. J. of Bifurcation and Chaos, 6(3).

Felderman, R.E. and Kleinrock. L. (1990). An Upper Bound on the Improvement of
Asynchronous versus Synchronous Distributed Processing. In SCS '90.

Fujimoto, R.M. (1990). Parallel Discrete Event Simulation. Communications of the ACM,
33(10):30-53.

Ghosh, K., Fujimoto, R.M., and Schwan, K. (1993). Time Warp Simulation in Time Constrained
Systems. In Proceedings of the 7th Workshop on Parallel and Distributed Simulation, pages
163,166.

Glazer, D.M. (1993). Load Balancing Parallel Discrete Event Simulations. PhD thesis, McGill
University.

Glazer, D.M. and Tropper, C. (1993). A Dynamic Load Balancing Algorithm for Time Warp.
Parallel and Distributed Systems, 4(3):318,327.

Goltz, U. (1987). Synchronic Distance. In Petri Nets: Central Model and Their Properties.
Advances in Petri Nets 1986, Proceedings of an Advanced Course, Bad Honnef. Lecture
Notes on Computer Science 254, pages 338,358. Springer-Verlag.

Goltz, U. and Reisig, W. (1982). Weighted Synchronic Distances. In Applications and Theory of
Petri Nets, Informatik-Fachberichte, pages 289,300. Springer-Verlag.

Gupta, A., Akyldiz, IF., and Fujimoto, R.M. (1991). Performance Analysis of Time Warp with
Multiple Homogeneous Processors. IEEE Transactions on Software Engineering.

Hershey, J. and Bush, S.F. (1999). On Respecting Interdependence Between Queuing Policy and
Message Value. Technical Report 99CRD151, General Electric Corporate Research and
Development.

192

Hicks, M., Kakkar, P., Moore, J.T., Gunter, CA., and Nettles, S. (1999). PLAN: A programming
language for active networks. ACM SIGPLAN Notices, 34(l):86-93.

Ho, Y.-C. (1992). Perturbation Analysis: Concepts and Algorithms. In Proceedings of the 1992
Winter Simulation Conference.

Hoare, C.A.R. (1981). Communicating Sequential Processes. Communications of the ACM.

Hofstadter, D.R. (1980). Gödel, Escher, Bach: An Eternal Golden Braid. Vintage Books. ISBN
0-394-74502-7.

Hong, D. and Rappaport, S.S. (1986). Traffic Model and Performance Analysis for Cellular
Mobile Radio Telephone Systems with Prioritized and Non prioritized Handoff Procedures.
IEEE Transactions on Vehicular Technology.

Huber, O.J. and Toutain, L. (1997). Mobile agents in active networks. In 3rd ECOOP Workshop
on Mobile Object Systems, Jyväskylä, Finland.

ISO (1995). Open Systems Interconnection - Management Protocol Specification - Part 2:
Common Management Information Protocol.

Jefferson D.R. and Sowizral, H.A. (1982). Fast Concurrent Simulation Using The Time Warp
Mechanism, Part I: Local Control. Technical Report TR-83-204, The Rand Corporation.

Jha, V. and Bagrodia, R.L. (1994). A Unified Framework for Conservative and Optimistic
Distributed Simulation. In Proceedings of the 8th Workshop on Parallel and Distributed
Simulation, pages 12,19.

J. Martinez and Silva, M. (1982). A Simple and Fast Algorithm to Obtain all Invariants of a
Generalized Petri Net. In Proceedings of the Second European Workshop on Application and
Theory of Petri Nets.

Kleinrock, L. (1975). Queuing Systems Volume I: Theory. John Wiley and Sons.

Konas, P. and Yew, P.C. (1995). Partitioning for Synchronous Parallel Simulation. In
Proceedings of the 9th Workshop on Parallel and Distributed Simulation, pages 181,184.

Kulkarni, A.B., Minden, GJ.,.Hill, R., Wijata, Y., Sheth, S., Pindi, H., Wahhab, F., Gopinath,
A., and Nagarajan, A. (1998). Implementation of a Prototype Active Network. In
OPENARCH '98.

Lamport, L. (1978). Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM.

Landauer, C. and Bellman, K.L. (1996). Integration Systems and Interaction Spaces. In
Proceedings of FroCoS'96: The First International Workshop on Frontiers of Combining
Systems.

Lazowaska, E. and Lin, Y.-B. (1990). Determining the Global Virtual Time in a Distributed
Simulation. Technical Report 90-01-02, University of Washington.

Legedza, U, Wetherall, D.J., and Guttag, J. (1998). Improving the Performance of Distributed
"Applications Using Active Networks. Submitted to IEEE INFOCOM.

Leong, H.V. and Agrawal, D. (1994). Semantics-based Time Warp Protocols. In Proceedings of
the 7th International Workshop on Distributed Simulation.

193

Lin, Y.-B. (1990). Understanding the Limits of Optimistic and Conservative Parallel
Simulation. Technical Report UWASH-90-08-02, University of Washington.

Lin, Y.-B. and Lazowska, E.D. (1990). Optimality Considerations of "Time Warp" Parallel
Simulation. Technical Report UWASH-89-07-05, University of Washington.

Lipton, R.J. and Mizell, D.W. (1990). Time Warp vs. Chandy-Misra: A Worst-Case Comparison.
In SCS '90.

Liu, G., Marlevi, A., and Jr., G. Q.M. (1995). A Mobile Virtual-Distributed System Architecture
for Supporting Wireless Mobile Computing and Communications. In Mobicom '95.

Liu, G.Y. (1996). The Effectiveness of a Full-Mobility Architecture for Wireless Mobile
Computing and Personal Communications. PhD thesis, Royal Institute of Technology,
Stockholm, Sweden.

Liu, G.Y. and Jr., G. Q.M. (1995). A Predictive Mobility Management Algorithm for Wireless
Mobile Computing and Communications In International Conference on Universal Personal
Communications (ICUPC), pages 268,272.

Lubachevsky, B., Schwatz, A., and Weiss, A. (1989). Rollback Sometimes Works ... if Filtered.
In Proceedings of the 1989 Winter Simulation Conference, pages 630—639.

Lubachevsky, B.D. (1989). Efficient Distributed Event Driven Simulations of Multiple-Loop
Networks. Communications of the ACM, 32(1):111—131.

Luenberger, D.G. (1989). Linear and Nonlinear Programming. Addison-Wesley.

Ma, S. and Ji, C. (1998). Wavelet models for video time-series. In Jordan, M.I., Kearns, M.J.,
and Solla, S.A., editors, Advances in Neural Information Processing Systems, volume 10.
The MIT Press.

Madisetti, V., Walrand, J., and Messerschmitt, D. (1987). MTW: Experimental Results for a
Constrained Optimistic Scheduling Paradigm. In Proc. 1987 Winter Simulation Conference.

Massechusetts Institute of Technology (1999). http://ana.lcs.mit.edu/darpa/.
http://ana.lcs.mit.edu/darpa/.

McAffer, J. (1990). A Unified Distributed Simulation System. In Proceedings of the 1990 Winter
Simulation Conference, pages 415,422.

Mikami, K., Tamura, H., Sengoku, M., and Yamaguchi, Y. (1993). On a Sufficient Condition for
a Matrix to be the Synchronic Distance Matric of a Marked Graph. IEICE Transactions
Fundamentals, E76-A(10).

Mills, D.L., editor (1985). Network Time Protocol. M/A-COM Linkabit.

Murphy, S. (1998). Secure Active Network Prototypes. Active Networks Working Group.

Noble, B.L. and Chamberlain, R.D. (1995). Predicting the Future: Resource Requirements and
Predictive Optimism. In Proceedings of the 9th Workshop on Parallel and Distributed
Simulation, pages 157,164.

Pandit, S.M. and Wu, S.-M. (1983). Time Series and System Analysis with Applications. John
Wiley and Sons.

Papoulis, A. (1991). Probability, Random Variables, and Stochastic Processes. McGraw Hill.

194

Peterson, J.L. (1981). Petri Net Theory and the Modeling of Systems. Prentice-Hall.

Peterson, L. (1998). Node OS and API for Active Networks. Active Networks Working Group.

Rajaei H., Ayani, R., and Thorelli, L.E. (1993a). The Local Time Warp Approach to Parallel
Simulation. In Proceedings of the 7th Workshop on Parallel and Distributed Simulation,

pages 37—43.

Rajaei H, Ayani, R., and Thorelli, L.-E. (1993b). The Local Time Warp Approach to Parallel
Simulation. In Proceedings of the 7th Workshop on Parallel and Distributed Simulation,
pages 119,126.

Reisig, W. (1985). Petri Nets. Springer-Verlag.

Rose, M.T. (1991). The Simple Book, An Introduction to the Management of TCP/IP Based
Internets. Prentice Hall.

Samrat Bhattacharjee, Kenneth L. Calvert and Ellen W. Zegura (1998). Reasoning About Active
Network Protocols. In Proceedings oflCNP '98. Austin, TX.

Seshan, S., Balakrishnan, H, and Katz, R.H. (1996). Handoffs in Cellular Wireless Networks:
The Daedalus Implementation Experience. Kluwer International Journal on Wireless
Personal Communications.

Silva, M. and Colom, J.M. (1988). On the Computation of Structural Synchronic Invariants in
P/T Nets. In Lecture Notes on Computer Science, volume 340, pages 386,417. Spnnger-
Verlag.

Silva, M. and Murata, T. (1992). B-Fairness and Structural B-Fairness in Petri Net Models of
Concurrent Systems. Journal of Computer and System Sciences, AA-AA1-M1.

Sokol, L.M., Briscoe, D.P., and Wieland, A.P. (1988). MTW: A Strategy for Scheduling Discrete
Simulation Events for Concurrent Execution. In Proceedings of the 2nd Workshop on
Parallel and Distributed Simulation, pages 34-42.

Sokol, L.M. and Stucky, B.K. (1990). WOLF: A Rollback Algorithm for Optimistic Distributed
Simulation Systems. In Proc. 1990 SCS Multi conference on Distributed Simulation, pages
169-173.

Srinivisan, S. and Paul F. Reynolds, J. (1995a). Adaptive Algorithms vs. Time Warp: An
Analytical Comparison. Technical Report CS-95-20, University of Virginia.

Srinivisan, S. and Paul F. Reynolds, J. (1995b). NPSI Adaptive Synchronization Algorithms for
PDES. Technical Report CS-94-44, University of Virginia.

Steinman, J.S. (1992). SPEEDES: A Unified Approach to Parallel Simulation. In Proceedings of
the 6th Workshop on Parallel and Distributed Simulation, pages 75,84.

Steinman, J.S. (1993). Breathing Time Warp. In Proceedings of the 7th Workshop on Parallel
and Distributed Simulation, pages 109,118.

Steven Berson and Bob Braden and Livio Riciulli (2000). Introduction to the ABone.
http://www.csl.sri.com/activate/.

Tamura, H. and Abe, T. (1996). Obtaining a Marked Graph from a Synchronic Distance Matrix.
Electronics and Communications in Japan, 79(3).

195

Tennenhouse, D.L. and Bose, V.G. (1995). SpectrumWare: A Software-Oriented Approach to
Wireless Signal Processing. In Mobicom '95.

Tennenhouse, D.L., Smith, J.M., Sincoskie, W.D., Wetherall, DJ., and Minden, G.J. (1997). A
survey of active network research. IEEE Communications Magazine, 35(l):80-86.

Thomas, R., Gilbert, H., and Mazziotto, G. (1988). Influence of the Movement of Mobile
Stations on the Performance of the Radio Cellular Network. Proceedings of the 3rd Nordic
Seminar.

Tinker, P. and Agra, J. (1990). Adaptive Model Prediction Using Time Warp. In SCS '90.

Turnbull, J. (1992). A Performance Study of Jefferson's Time Warp Scheme for Distributed
Simulation. Master's thesis, Case Western Reserve University.

Voss, K., Genrich, H.J., and Rozenberg, G. (1987). Concurrency and Nets. Springer-Verlag.
ISBN 0-387-18057-5.

Wetherall, D., Guttag, J., and Tennenhouse, D. (1999). ANTS: Network services without the red
tape. Computer, 32(4):42-48.

Yemini, Y., Konstantinou, A.V., and Florissi, D. (2000). NESTOR: An architecture for self-
management and organization. IEEE Journal on Selected Areas in Communications. To
appear in the IEEE JSAC special issue on network management (publication 2nd quarter
2000).

Zegura, E. (1998). Composable Services for Active Networks. AN Composable Services
Working Group.

«U.S. GOVERNMENT PRINTING OFFICE: 2O01-61O-O55-IO097

196

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

